Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
基本信息
- 批准号:10724513
- 负责人:
- 金额:$ 46.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-21 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccountingAdoptionAfrican AmericanAfrican American populationAftercareAlgorithmsBenignBiomedical EngineeringCharacteristicsClinicalClinical TrialsCommunitiesConventional SurgeryDataData SetDatabasesDiagnosticDiseaseEconomic BurdenEffectivenessEthnic OriginFertilityFibroid TumorFinancial costGoalsHealthcare SystemsHigh PrevalenceHysterectomyInsurance CoverageInterdisciplinary StudyLeadMRI ScansMachine LearningMagnetic Resonance ImagingManualsMeasuresMenopauseMethodsMinorityMinority GroupsModelingNational Institute of Child Health and Human DevelopmentOperative Surgical ProceduresOutcomeOutputPatient-Focused OutcomesPatientsPerformancePhysiciansPositioning AttributePostoperative PeriodPrejudiceProceduresRaceRadiology SpecialtyRecoveryReportingRiskScanningScreening procedureSurveysSymptomsTherapeutic EmbolizationTissuesTrainingTreatment EffectivenessUltrasonographyUterine FibroidsUterine myomectomyVascularizationWomanWorkautoencodercombatcostcost effective treatmentdeep learningdeep learning modelfollow-upinsightlearning strategylow socioeconomic statusmachine learning methodminimally invasiveminority patientneglectnoninvasive diagnosisnoveloutcome predictionpredictive modelingradiologistradiomicsreduce symptomsscreeningside effectsuccesstooltumor
项目摘要
PROJECT SUMMARY
Uterine fibroids represent the highest prevalence of benign tumors in women, with reports ranging anywhere
from 4.5% to 68.6%, with a significant bias towards African American women. It is estimated that the economic
burden on the healthcare system from symptomatic women with uterine fibroids is up to $34 million.
Currently, uterine fibroid embolization (UFE) is considered a highly effective minimally invasive procedure
with up to an 85% success rate. However, hysterectomies are the most commonly performed procedures,
accounting for nearly 600,000 annually, while only 14,000 UFE procedures are performed annually. It has been
well documented that minorities are less likely to be referred for minimally invasive procedures, even though
there is universal insurance coverage for them. Furthermore, women in lower socio-economic status, particularly
African Americans, have been disproportionately referred for open surgery. Therefore, automated tools, like the
ones in this proposal, that can provide unbiased referrals will be significant advantage at combating this
unfortunate bias.
This proposal will specifically explore the use of machine learning and deep learning methods to leverage a
novel retrospective dataset that compiles features extracted from paired pre-operative and post-operative
magnetic resonance imaging (MRI) scans of up to 700 patients who underwent a UFE. These models will provide
a UFE treatment effectiveness score that will provide an objective and quantitative metric to decide whether a
patient is good candidate for UFE.
The short term impact of this proposal will be the creation of a curated database of paired UFE MRI scans
that have been analyzed for various metrics regarding fibroid positions and patient characteristics, that will allow
the clinical community to begin providing quantitative methods to determine UFE candidates. The long-term
impact of this proposal will be realized in subsequent clinical trials that validate these AI models properly to
predict which patients should be leveraging UFE as a non-surgical alternative for treating fibroids.
项目摘要
子宫肌瘤代表女性良性肿瘤的最高患病率,报告范围在任何地方
从4.5%到68.6%,对非裔美国妇女有很大的偏见。据估计,经济
有症状的子宫肌瘤女性的医疗保健系统负担高达3400万美元。
目前,子宫肌瘤栓塞(UFE)被认为是一种高效的最低侵入性手术
成功率最高85%。但是,子宫切除术是最常见的程序,
每年占近600,000个,而每年仅执行14,000个UFE程序。它一直
有充分的文献证明,少数族裔不太可能被转介给最低侵入性程序,即使
他们有通用的保险范围。此外,处于社会经济状况较低的妇女,特别是
非洲裔美国人的开放手术不成比例地转诊。因此,自动化工具,例如
在此提案中,可以提供公正的转介将是对抗这一问题的重要优势
不幸的偏见。
该建议将专门探讨机器学习和深度学习方法的使用来利用
新型回顾性数据集编译了从配对前和术后提取的特征
磁共振成像(MRI)扫描多达700名接受UFE的患者。这些模型将提供
UFE治疗有效性得分将提供一个客观和定量指标,以决定是否a
患者是UFE的好候选人。
该提案的短期影响将是创建配对UFE MRI扫描的策划数据库
已经分析了有关肌瘤位置和患者特征的各种指标,这将允许
临床社区开始提供定量方法来确定UFE候选者。长期
该提案的影响将在随后的临床试验中实现,这些试验适当验证这些AI模型
预测哪些患者应利用UFE作为治疗肌瘤的非手术替代方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bobak Mosadegh其他文献
Bobak Mosadegh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10405282 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Automated three-dimensional spinal navigation system for chronic pain therapy
用于慢性疼痛治疗的自动化三维脊柱导航系统
- 批准号:
10384241 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Innovation Corps Administrative Supplement for Magnetic Bronchoscope for Improved Pulmonary Access
创新军团用于改善肺部通路的磁力支气管镜行政补充
- 批准号:
10541319 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Automated three-dimensional spinal navigation system for chronic pain therapy
用于慢性疼痛治疗的自动化三维脊柱导航系统
- 批准号:
10490879 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别: