Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
基本信息
- 批准号:10285226
- 负责人:
- 金额:$ 20.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-02 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdoptionAftercareAgreementAlgorithmic AnalysisAlgorithmsAnatomyAreaArtificial IntelligenceAtlasesAwardBioinformaticsCancer PatientCancer SurvivorCaringChronicClinicalClinical ManagementCombined Modality TherapyCommunicationComputer ModelsComputing MethodologiesConsensusDataData AggregationData AnalysesDecision MakingDelphi TechniqueDentalDental CareDentistryDentistsDevelopmentDiseaseDisease ProgressionDocumentationDoseExploratory/Developmental Grant for Diagnostic Cancer ImagingFAIR principlesFosteringFoundationsFutureGoalsHead and neck structureHealthHigh PrevalenceIndividualInformaticsIntensity modulated proton therapyIntensity-Modulated RadiotherapyInterdisciplinary CommunicationJournalsKnowledgeLabelLate EffectsLong-Term CareMachine LearningMandibleManualsManuscriptsMedicalMethodologyMethodsModelingMonitorMorbidity - disease rateNational Institute of Dental and Craniofacial ResearchNeeds AssessmentOperative Surgical ProceduresOralOral cavityOral healthOrganOsteoradionecrosisOutcomeOutcome AssessmentParotid GlandPatientsPeer ReviewPeriodontal DiseasesPhasePilot ProjectsProceduresPrognosisProviderPublic HealthPublishingRadiationRadiation Dose UnitRadiation OncologistRadiation therapyReportingReproducibilityResearchResolutionResourcesRiskRisk AssessmentSelection for TreatmentsSeveritiesStandardizationStructureSurvivorsSymptomsSystemTechniquesTimeTooth structureToxic effectTrainingTreatment outcomeTrismusUnited StatesValidationX-Ray Computed TomographyXerostomiabasecohortconvolutional neural networkcraniofacialdeep learningdesignexperienceimprovedinnovationinterestlearning strategymachine learning methodmalignant oropharynx neoplasmneural networknovelpersistent symptompersonalized managementpersonalized medicineprospectiveresponserisk predictionrisk prediction modelsurvival outcomesymptom managementtooltreatment optimizationtreatment planning
项目摘要
PROJECT SUMMARY
Oral cavity and oropharyngeal (OC/OPC) cancers afflict more than 53,000 individuals in the United States
annually. Despite advancements in oncologic therapies, the majority of patients will experience significant toxicity
burden during and after therapy, including moderate-severe xerostomia, reduced mouth opening (i.e. trismus),
periodontal disease, and osteoradionecrosis. To date, acute and chronic orodental complications are largely
managed by clinicians and dentists based on empirical knowledge, with wide inter-provider management
variability influenced by provider experience and available clinical information which is often incomplete,
incorrect, or nonexistent. To further complicate long-term care of OC/OPC survivors, there is no standardized
method for communicating with dentists the extent and intensity of radiation doses delivered to tooth bearing
areas which is vital information for accurate assessment of risks related to dental procedures. Therefore,
development of a standardized radiotherapy dental information tool and data-driven, algorithmic toxicity risk
prediction models for enhanced communication and personalized medicine for OC/OPC survivors remains an
unmet public health need. In response to NIDCR’s NOT-DE-20-006, we herein propose a rigorous and
reproducible application of informatics and computational methods and approaches for the development of
machine learning “ML/AI based optimization of clinical procedures for precision dental care”, “novel and robust
data analysis algorithms to tackle causal mechanisms of action for onset and progression of disease” related to
posttherapy orodental complications, and “computational modeling for treatment planning and assessment of
treatment outcomes.” In Specific Aim 1, we will train and validate a deep learning contouring (DLC) neural
network for automatic delineation of tooth-bearing regions. Our collaborator, Dr. van Dijk, has previous
experience with DLC design and application for auto-delineation of non-dental head and neck organs at risk
(OAR). Her research, published in a peer-reviewed journal showing an equal or significantly improved OAR
automatic delineation using DLC over atlas-based contouring, will serve as a reproducible model for our
proposed project. Using DLC-based mandibular and dental OAR delineation (SA 1), we will develop a novel
“radiation odontogram” which will generate automated and accurate summative radiotherapy dose distribution
mapping reports for effective datatransmission and communication among providers (SA 2). Accurate prognosis
and management of high-morbidity high-prevalence post-therapy orodental sequelae will be enabled through
the development of a statistically robust machine-learning based model of toxicity risk predictions that
incorporates patient- and provide-generated data(Aim 3). In summary, the RADMAP proposal fosters innovative
informatics and computational modeling approaches to address existing challenges in multidisciplinary
communication and precision dental care for OC/OPC survivors, with practice-changing implications in the
clinical setting and for oral, dental, and craniofacial research.
项目摘要
在美国,口腔和口咽(OC/OPC)癌症遭受了53,000多人的困扰
尽管肿瘤学疗法的进步,大多数患者将经历重大毒性
伯恩在治疗期间和之后,包括中期骨静脉曲菌,口腔张开(即三义),
牙周疾病和骨ado骨。迄今为止,急性和慢性发育并发症主要是
由临床医生和牙医基于经验知识管理,并具有广泛的管理人员管理
受提供者经验和可用临床信息影响的可变性,通常不完整,
不正确或不存在。为了进一步复杂化OC/OPC幸存的长期护理,没有标准化
与牙医交流辐射剂量的程度和强度的方法
对于准确评估与牙科程序相关的风险的重要信息的区域。所以,
开发标准化放射治疗牙科信息工具和数据驱动的算法毒性风险
增强沟通和个性化医学的预测模型OC/OPC存活仍然是一个
未满足的公共卫生需求。为了响应NIDCR的非DE-20-006,我们在这里提出了一个严格的和
可重现信息和计算方法和方法的应用
机器学习“基于ML/AI的精确牙科护理临床程序的优化”,“新颖而健壮
数据分析算法以解决与疾病发作和进展的因果关系机制
治疗后的并发症,以及“用于治疗计划和评估的计算建模
在特定的目标1中,我们将训练和验证深度学习轮廓(DLC)中性
自动描绘牙齿牙齿区域的网络。我们的合作者Van Dijk博士以前
具有DLC设计和应用的经验
(桨)。她的研究发表在同行评审的期刊上,显示了相等或显着改善的桨
使用基于Atlas的轮廓上的DLC自动描述将作为我们的可再现模型
拟议项目。使用基于DLC的下颌和牙科划分(SA 1),我们将开发一种新颖
“辐射探针图”将产生自动化和准确的夏季放射治疗剂量分布
绘制报告提供有效的数据传输和提供商之间的通信报告(SA 2)。准确的提示
并通过治疗后疗法后的后遗症的高质量管理。
基于统计坚固的机器学习模型的毒性风险预测模型的发展
合并患者和提供的数据(AIM 3)。总而言之,Radmap提案促进了创新
信息和计算建模方法,以应对多学科的现有挑战
OC/OPC生存的沟通和精确牙科护理,对实践改变了
临床环境以及口腔,牙齿和颅面研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Catherine Moreno其他文献
Amy Catherine Moreno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Catherine Moreno', 18)}}的其他基金
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
- 批准号:
10655430 - 财政年份:2022
- 资助金额:
$ 20.89万 - 项目类别:
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
- 批准号:
10449579 - 财政年份:2022
- 资助金额:
$ 20.89万 - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 20.89万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging COVID-19 to modernize depression care for VA primary care populations
利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化
- 批准号:
10636681 - 财政年份:2023
- 资助金额:
$ 20.89万 - 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
- 批准号:
10722943 - 财政年份:2023
- 资助金额:
$ 20.89万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 20.89万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 20.89万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 20.89万 - 项目类别: