Small molecule inhibitors of lytic transglycosylase to potentiate beta-lactam antibiotics
裂解性转糖基酶小分子抑制剂可增强 β-内酰胺抗生素的作用
基本信息
- 批准号:10078254
- 负责人:
- 金额:$ 21.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiActive SitesAnabolismAnimalsAnti-Bacterial AgentsAntibioticsAntimicrobial ResistanceBacteriaBacterial Antibiotic ResistanceBacterial ProteinsBindingBiologicalBiological AssayCampylobacter jejuniCarbohydratesCell DeathCell WallCellsChemicalsChemosensitizationCrystallographyCytolysisCytoplasmDisaccharidesDockingDrug TargetingEnterobacter cloacaeEnzyme Inhibitor DrugsEnzymesEscherichia coliGlucosamineHelicobacter pyloriKlebsiella aerogenesKnock-outLabelLibrariesLinkLyticMechanicsMicrobiologyMonobactamsMultiple Bacterial Drug ResistanceNatural ProductsNeisseriaNeisseria gonorrhoeaePenicillin-Binding ProteinsPeptidoglycanPharmaceutical ChemistryProteinsPseudomonas aeruginosaPyrrolidinesResistanceShapesStructureTestingbacterial resistancebasebeta-Lactamasebeta-Lactamsbiophysical techniquescrosslinkdesignglobal healthglycosyltransferaseimprovedin silicoinhibitor/antagonistnovelnovel therapeuticspathogenpathogenic bacteriaprotein crosslinkresistance mechanismscaffoldscreeningsmall molecule inhibitortool
项目摘要
The rapid emergence of antibiotic-resistant bacteria is a major global health threat. This spurs the need to revisit
key antibacterial drug targets such as the peptidoglycan (PG) layer. The PG synthesis machinery is targeted by
β-lactam antibiotics that inhibit penicillin-binding proteins (PBP) which crosslink PG strands. A main resistance
mechanism is the expression of β-lactamases that can degrade β-lactams. There is thus a critical need for new
antibiotics or for avenues to re-sensitize bacteria to β-lactam antibiotics. For the latter, one approach is
developing β-lactamase inhibitors; unfortunately, the 5 current inhibitors do not inhibit certain key β-lactamases,
and there are resistance mechanisms via inhibitor-resistant β-lactamases. A second approach is to inhibit PG
degrading lytic transglycosylases (LT), the focus of this application.
Inhibition of LTs or knocking out LTs genetically has been shown to restore the efficacy of β-lactam
antibiotics in many serious pathogens including Escherichia coli, Neisseria meningitides, Pseudomonas
aeruginosa, Enterobacter aerogenes, Acinetobacter baumannii, Helicobacter pylori, and Campylobacter jejuni.
This β-lactam potentiation involves two possible mechanisms of which, depending on the pathogen, either or
both contribute. In the first mechanism, the inhibition of both PBP and LT leads to long non-cross-linked PG
strands that cause cell wall bulges, weakening the cell wall. In the second mechanism, LT activity generates
disaccharide PG product that, when recycled to the cytoplasm, increases β-lactamase expression in certain
pathogens. Despite these compelling observations, there is only one promising LT inhibitor known, bulgecin A;
however, this natural product carbohydrate-based inhibitor is very challenging for medicinal chemistry efforts. As
a result, bulgecin A has not been very amenable to advancing inhibition studies towards animal studies and
beyond. This application proposes to overcome this key roadblock by developing new LT inhibitors with
scaffold(s) different from bulgecin A via biased (Aim 1) and non-biased fragment-based approaches (Aim 2).
Aim 1: To identify new inhibitor fragments that retain bulgecin A's key N-acetyl group. N-acetyl containing
compounds will be selected or designed aided by docking; their LT binding and inhibition will be probed by
biophysical techniques, protein crystallography, and enzymatic assays. Compounds will be tested against
multiple LTs known to bind bulgecin A, and which are amenable to crystallography (E. coli, P. aeruginosa, and
C. jejuni) in order to identify at least one fragment binding to one LT as a novel starting point for optimization.
Aim 2: To identify non-acetyl containing fragments that bind to the active site of LT, we will screen non-
biased fragments against LTs for binding and inhibition as in Aim 1. Such fragments could bind to the N-acetyl
binding pocket or to the adjacent pockets. Compounds will be obtained from an sp3 fragment library and from in
silico screening of larger libraries. Hits from Aims 1 and 2 will be modified/grown/linked to improve binding and
inhibition of one or more of the LTs and also tested microbiologically for the potentiation of β-lactam antibiotics.
抗生素耐药细菌的迅速出现是全球健康的主要威胁,这促使我们重新审视这一问题。
肽聚糖 (PG) 层等关键抗菌药物靶点是 PG 合成机制的目标。
β-内酰胺类抗生素可抑制青霉素结合蛋白 (PBP),该蛋白可交联 PG 链,是一种主要耐药性。
机制是可以降解β-内酰胺的β-内酰胺酶的表达,因此迫切需要新的。
抗生素或使细菌对β-内酰胺抗生素重新敏感的途径。对于后者,一种方法是。
正在开发 β-内酰胺酶抑制剂;不幸的是,目前的 5 种抑制剂不能抑制某些关键的 β-内酰胺酶,
第二种方法是抑制 PG。
降解裂解性转糖基酶 (LT),是本应用的重点。
抑制 LT 或从基因上敲除 LT 已被证明可以恢复 β-内酰胺的功效
许多严重病原体的抗生素,包括大肠杆菌、脑膜炎奈瑟菌、假单胞菌
铜绿假单胞菌、产气肠杆菌、鲍曼不动杆菌、幽门螺杆菌和空肠弯曲杆菌。
这种 β-内酰胺增强作用涉及两种可能的机制,其中任一机制取决于病原体,或者
在第一种机制中,PBP 和 LT 的抑制都会导致长的非交联 PG。
导致细胞壁凸起、削弱细胞壁的链 在第二种机制中,LT 活性产生。
二糖 PG 产品,当再循环到细胞质时,会增加某些细胞中 β-内酰胺酶的表达
尽管有这些令人信服的观察结果,但已知只有一种有前途的 LT 抑制剂:bulgecin A;
然而,这种基于碳水化合物的天然产物抑制剂对于药物化学工作来说非常具有挑战性。
因此,bulgecin A 不太适合将抑制研究推进到动物研究和
该申请建议通过开发新的 LT 抑制剂来克服这一关键障碍。
通过有偏向(目标 1)和无偏向片段方法(目标 2)构建与 bulgecin A 不同的支架。
目标 1:鉴定保留了 bulgecin A 的关键 N-乙酰基的新抑制剂片段。
将通过对接来选择或设计化合物;将通过以下方法探测它们的 LT 结合和抑制作用:
将针对生物物理技术、蛋白质晶体学和酶分析进行测试。
已知多种 LT 可以结合 bulgecin A,并且适合晶体学分析(大肠杆菌、铜绿假单胞菌和
C. jejuni),以确定至少一个与一个 LT 结合的片段作为优化的新起点。
目标 2:为了识别与 LT 活性位点结合的不含乙酰基的片段,我们将筛选非乙酰基片段。
如目标 1 所示,偏向针对 LT 的片段进行结合和抑制。此类片段可以与 N-乙酰基结合
结合口袋或邻近口袋的化合物将从sp3片段文库中获得。
来自目标 1 和 2 的命中结果将被修改/生长/链接以改善结合和
抑制一种或多种 LT,并通过微生物学测试 β-内酰胺抗生素的增强作用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turnover Chemistry and Structural Characterization of the Cj0843c Lytic Transglycosylase of Campylobacter jejuni.
空肠弯曲杆菌 Cj0843c 裂解性转糖基酶的周转化学和结构表征。
- DOI:
- 发表时间:2021-04-13
- 期刊:
- 影响因子:2.9
- 作者:Kumar, Vijay;Mathure, Snigdha A;Lee, Mijoon;Boorman, Jacob;Zeng, Ximin;Lin, Jun;Hesek, Dusan;Lastochkin, Elena;Mobashery, Shahriar;van den Akker, Focco
- 通讯作者:van den Akker, Focco
Exploring the inhibition of the soluble lytic transglycosylase Cj0843c of Campylobacter jejuni via targeting different sites with different scaffolds.
通过使用不同支架靶向不同位点,探索对空肠弯曲杆菌可溶性裂解转糖基酶 Cj0843c 的抑制。
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Kumar, Vijay;Boorman, Jacob;Greenlee, William J;Zeng, Ximin;Lin, Jun;van den Akker, Focco
- 通讯作者:van den Akker, Focco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FOCCO VAN DEN AKKER其他文献
FOCCO VAN DEN AKKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FOCCO VAN DEN AKKER', 18)}}的其他基金
Developing novel pyrazolidinone antibiotics targeting PBP3 to overcome resistance mechanisms
开发针对 PBP3 的新型吡唑烷酮抗生素以克服耐药机制
- 批准号:
10590839 - 财政年份:2023
- 资助金额:
$ 21.01万 - 项目类别:
Targeting Escherichia coli PBP1b using fragment-based approaches
使用基于片段的方法靶向大肠杆菌 PBP1b
- 批准号:
10374158 - 财政年份:2021
- 资助金额:
$ 21.01万 - 项目类别:
Targeting Escherichia coli PBP1b using fragment-based approaches
使用基于片段的方法靶向大肠杆菌 PBP1b
- 批准号:
10217694 - 财政年份:2021
- 资助金额:
$ 21.01万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
8362188 - 财政年份:2011
- 资助金额:
$ 21.01万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
8170149 - 财政年份:2010
- 资助金额:
$ 21.01万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE PROTEINS AND SIGNAL TRANSDUCTI
抗生素耐药蛋白和信号转导的晶体学研究
- 批准号:
7954491 - 财政年份:2009
- 资助金额:
$ 21.01万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE AND SIGNAL TRANSDUCTION
抗生素耐药性和信号转导的晶体学研究
- 批准号:
7726243 - 财政年份:2008
- 资助金额:
$ 21.01万 - 项目类别:
Mechanistic studies and inhibition strategies for antibiotic resistance
抗生素耐药性的机制研究和抑制策略
- 批准号:
7321256 - 财政年份:2007
- 资助金额:
$ 21.01万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF ANTIBIOTIC RESISTANCE AND SIGNAL TRANSDUCTION
抗生素耐药性和信号转导的晶体学研究
- 批准号:
7602310 - 财政年份:2007
- 资助金额:
$ 21.01万 - 项目类别:
Mechanistic studies and inhibition strategies for antibiotic resistance
抗生素耐药性的机制研究和抑制策略
- 批准号:
7658125 - 财政年份:2007
- 资助金额:
$ 21.01万 - 项目类别:
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 21.01万 - 项目类别:
Designing chemoenzymatic approaches to biologically active molecules enabled by enzyme library screening
通过酶库筛选设计生物活性分子的化学酶方法
- 批准号:
10723582 - 财政年份:2023
- 资助金额:
$ 21.01万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 21.01万 - 项目类别:
Heme and Nonheme Transition Metal Complexes, Reactivity, and Mechanism
血红素和非血红素过渡金属配合物、反应性和机制
- 批准号:
10623095 - 财政年份:2023
- 资助金额:
$ 21.01万 - 项目类别:
Investigating neofunctionalized alpha-carbonic anhydrases as an emerging class of biosynthetic enzyme in plant and animal metabolism
研究新功能化α-碳酸酐酶作为植物和动物代谢中新兴的一类生物合成酶
- 批准号:
10711678 - 财政年份:2023
- 资助金额:
$ 21.01万 - 项目类别: