Coding of auditory space in the avian brain
鸟类大脑听觉空间的编码
基本信息
- 批准号:8040464
- 负责人:
- 金额:$ 35.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acoustic NerveAcousticsAddressAlgorithmsAreaArtificial IntelligenceAuditoryAuditory PhysiologyAuditory systemBarn OwlsBehaviorBehavioralBiological ModelsBiologyBirdsBrainBrain StemCell NucleusCellsCochleaCochlear ImplantsCochlear nucleusCodeComplexCuesDataDevicesDimensionsDiseaseDrug FormulationsEarEngineeringFrequenciesGoalsHeadHearingHumanImpaired cognitionInferior ColliculusLateralLeftLinkLocationMammalsMapsMidbrain structureModelingNeuronsNeurosciencesNoiseOutputPathway interactionsPatientsPatternPhysiologicalPopulationProcessPropertyProsencephalonResearchRoboticsSaccadesSchemeSignal TransductionSound LocalizationSourceSpecialistStagingStimulusStrigiformesStructureSystemTechniquesTechnologyTestingThalamic NucleiThalamic structureTheoretical modelTimeWorkauditory nucleiauditory pathwaybasein vivoinformation processinginterdisciplinary approachneural prosthesisneuromechanismneurophysiologyoperationreceptive fieldrelating to nervous systemresearch studyresponsesoundtheories
项目摘要
DESCRIPTION (provided by applicant): All auditory information used for sound localization ascends through the brainstem auditory nuclei. We will use physiological and theoretical approaches to understand how multidimensional features of sound, relevant to sound localization, are processed and encoded in the avian auditory brainstem. A primary advantage of using barn owls for the exploration of auditory processing is the substantial body of behavioral, anatomical and neurophysiological work that has elucidated the mechanisms of sound localization. The main cues owls use to compute sound direction are the interaural level difference (ILD) and the interaural time difference (ITD). Unlike mammals, owls use ILD to determine the vertical coordinate of the sound source and ITD to determine the horizontal coordinate. Two independent brainstem pathways process ITD and ILD and converge in the midbrain, where a spatiotopic map of auditory space emerges. Activity of neurons in the map precedes, and stimulation evokes, a head-orienting response towards the sound source. Thus, in barn owls, the neural algorithm for sound localization can be viewed as a system in which two input variables (ITD and ILD) are processed in parallel in order to control two output variables (horizontal and vertical coordinates of head saccades). We have used theoretical models to describe the neural responses that encode spatial information in the owl's auditory system. This approach has guided our experiments and aided the interpretation of our findings. Behavioral experiments in humans have used a similar approach to sound localization. However, due to a lack of neural data in humans, the predictive power of models of sound localization with regard to the neural bases of behavior has been a persistent question. Our studies in barn owls address this issue by investigating the mechanism of neural computations that are fundamental to models developed for human sound localization. This proposal is organized around three primary questions: 1) What are the computational primitives of auditory-space processing in the owl's brainstem? 2) How is spectrotemporal information encoded, transmitted and processed in parallel with spatial information? 3) What fundamental changes in information coding occur at the crossroads between the auditory midbrain and forebrain? We will address these questions using a wide range of strategies and techniques - intracellular in vivo recordings, cell-attached recording in vivo, multi-neuron tetrode recording, and modeling - which will make our approach interdisciplinary and of broad scope. Our research seeks to understand the function of the auditory brainstem and midbrain. In doing so, we will identify the types of information that are available to upstream nuclei and show how this information is encoded. A comprehensive approach to information processing in the auditory brainstem has the potential to provide new avenues for better understanding disorders of the central auditory system and cognitive impairments involving hearing. By linking biology and engineering, mathematical formulations of brain processes can advance technology related to robotics and neural prosthetics. Cochlear implants that provide encoding of stimuli in ways that are more biologically relevant can be built, while devices acting downstream of the cochlea could aid patients with compromised or non-functional auditory nerves. By its differences and similarities with other species, the avian brain provides an excellent model system to define fundamental properties of neural processing and neural coding.
PUBLIC HEALTH RELEVANCE: The proposed research will test hypotheses based on human models, of how the auditory system computes sound direction. This approach has the potential of providing new avenues for better understanding disorders of the central auditory system and cognitive impairments involving hearing. By linking biology and engineering, mathematical formulations of brain processes can advance technology related to artificial intelligence and neural prosthetics; smarter cochlear implants can be built, as well as devices acting downstream of the cochlea could aid patients with compromised or non-functional auditory nerves.
描述(由申请人提供):用于声音定位的所有听觉信息通过脑干听觉核上升。我们将使用生理和理论方法来了解声音的多维特征与声音本地化相关的多维特征是在鸟类听觉脑干中处理和编码的。使用谷仓猫头鹰来探索听觉处理的主要优点是行为,解剖学和神经生理学的实质体,阐明了声音定位的机制。猫头鹰用于计算声音方向的主要提示是耳间级别差异(ILD)和室内时间差(ITD)。与哺乳动物不同,猫头鹰使用ILD来确定声源的垂直坐标,并确定水平坐标。两种独立的脑干通路在中脑中处理ITD和ILD,并收敛,并在其中出现了一个听觉空间的时空图。地图中神经元的活性和刺激唤起,这是对声源的头部方向反应。因此,在谷仓猫头鹰中,可以将用于声音定位的神经算法视为一个系统,在该系统中,两个输入变量(ITD和ILD)并行处理,以控制两个输出变量(头部扫视的水平和垂直坐标)。我们已经使用理论模型来描述猫头鹰听觉系统中编码空间信息的神经响应。这种方法指导了我们的实验,并有助于我们发现的解释。人类的行为实验使用了类似的方法来定位。但是,由于人类缺乏神经数据,因此在行为神经基础方面,声音定位模型的预测能力一直是一个持续的问题。我们在谷仓猫头鹰中的研究通过研究神经计算的机制来解决这个问题,这些机制是针对人类声音本地化模型的基础的。该提议围绕三个主要问题组织:1)猫头鹰脑干中听觉空间处理的计算原始图是什么? 2)如何与空间信息并行编码,传输和处理光谱信息? 3)信息编码的哪些基本变化发生在听觉中脑和前脑之间的十字路口?我们将使用各种策略和技术解决这些问题 - 体内记录,体内细胞连接记录,多神经元二元录制和建模 - 这将使我们的方法跨学科和广泛的范围。我们的研究试图了解听觉脑干和中脑的功能。在此过程中,我们将确定上游核可用的信息类型,并显示该信息的编码方式。在听觉脑干中,一种全面的信息处理方法有可能提供新的途径,以更好地理解中央听觉系统的疾病和涉及听力的认知障碍。通过将生物学和工程联系起来,大脑过程的数学表述可以推动与机器人技术和神经假体相关的技术。可以建立以更具生物学相关的方式提供刺激编码的人工耳蜗植入物,而耳蜗下游作用的设备可以帮助患有受损或非功能性听觉神经的患者。通过它与其他物种的差异和相似性,禽大脑为定义神经加工和神经编码的基本特性提供了出色的模型系统。
公共卫生相关性:拟议的研究将基于人类模型测试假设,以了解听觉系统如何计算声音方向。这种方法具有提供新的途径,以更好地理解中央听觉系统的疾病和涉及听力的认知障碍。通过将生物学和工程联系起来,大脑过程的数学表述可以推进与人工智能和神经假体相关的技术。可以建造更明智的人工耳蜗植入物,以及耳蜗下游作用的设备可以帮助患有受损或非功能性听觉神经的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose L Pena其他文献
Jose L Pena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose L Pena', 18)}}的其他基金
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 35.28万 - 项目类别:
Subcortical and Cortical Responses in Infants Evoked by Running Speech
婴儿跑步言语引起的皮质下和皮质反应
- 批准号:
10373228 - 财政年份:2022
- 资助金额:
$ 35.28万 - 项目类别:
Subcortical and Cortical Responses in Infants Evoked by Running Speech
婴儿跑步言语引起的皮质下和皮质反应
- 批准号:
10598552 - 财政年份:2022
- 资助金额:
$ 35.28万 - 项目类别:
Supplement: Active and Nonlinear Models for Cochlear Mechanics
补充:耳蜗力学的主动和非线性模型
- 批准号:
10405710 - 财政年份:2021
- 资助金额:
$ 35.28万 - 项目类别:
Neural Signatures of Enhanced Central Auditory Gain in Hyperacusis
听觉过敏中枢听觉增益增强的神经特征
- 批准号:
10285833 - 财政年份:2021
- 资助金额:
$ 35.28万 - 项目类别: