Injectable Hybrid SMART spheroids to enhance stem cell therapy for CNS injuries
可注射混合 SMART 球体增强干细胞治疗中枢神经系统损伤
基本信息
- 批准号:10752890
- 负责人:
- 金额:$ 39.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelAxonBiocompatible MaterialsBiological ProcessCell Differentiation processCell TherapyCellsCentral Nervous SystemCharacteristicsCicatrixClinicClinicalComplexCuesDataDevelopmentDifferentiation and GrowthDiseaseDrug Delivery SystemsEnvironmentExtracellular MatrixFunctional disorderGenerationsGliosisGoalsGrowthHumanHybridsImpairmentImplantIn VitroInflammationInflammatoryInjectableInjuryInvestigationLamininMedicineMethodsMicrogliaMissionModelingNanotechnologyNatural regenerationNerve RegenerationNeuritesNeurologic DeficitNeuronal DifferentiationNeuronal PlasticityNeuronsNeurosciencesNeurosphereOrganoidsPatientsPopulationProliferatingPropertyPublic HealthRecovery of FunctionResearchSignal TransductionSiteSpinal cord injuryStem cell transplantSurvival RateSystemTechniquesTherapeuticTherapeutic EffectTherapeutic InterventionTissuesTranslatingTreatment outcomeUnited States National Institutes of Healthaxon growthaxon regenerationaxonal sproutingbiodegradable scaffoldbiomaterial compatibilitycell assemblycentral nervous system injuryclinical applicationcontrolled releasedisabilityeffective therapyimplantationimprovedin vivoinflammatory modulationinhibitorinnovationinnovative technologiesmultidisciplinarynanonanomaterialsnerve stem cellnervous system disorderneuralneural circuitneurogenesisneuronal growthneuronal survivalnew technologynext generationnotch proteinnovelpermissivenessregeneration potentialrepairedscaffoldspatiotemporalstem cell biologystem cell differentiationstem cell fatestem cell growthstem cell survivalstem cell therapystem cellssuccesssynergismtechnology platformthree dimensional cell culturetooltumor-immune system interactions
项目摘要
PROJECT SUMMARY
Current stem cell-based treatments for central nervous system (CNS) injuries such as spinal cord injury (SCI),
are severely hampered by poor stem cell survival rates, inefficient integration, loss of neural plasticity, and
uncontrollable differentiation of implanted cells, all of which are caused by the highly inhibitory and inflammatory
microenvironment at disease or injury sites. Specifically, gliosis at the injury site causes the secretion of inhibitory
factors leading to poor axon regeneration and sprouting of surviving neuronal populations, resulting in the
intrinsic limitations of the CNS to regenerate after the initial injury. Therefore, there is an urgent need for effective
strategies to generate a robust population of functional neurons derived from patient-derived stem cells and re-
establish the damaged neural circuitry. To this end, we propose to integrate several fields of research, including
nanotechnology, biomaterials, neuroscience, and stem cell biology, to develop a novel nanoscaffold-based stem
cell assembly platform that allows for the generation of favorable microenvironments during stem cell
implantation and the control of stem cell fate in vivo for potential clinical applications.
To address the fundamental impediment of regeneration associated with CNS injuries and diseases, we
propose to develop injectable 3D-Hybrid SMART neuro-spheroids for enhanced stem cell therapy and effective
treatment of SCI in vivo. The 3D-Hybrid SMART neuro-spheroids are assembled from biodegradable scaffold
nanomaterials enriched with natural neural ECM to promote neural stem cell (NSC) survival and differentiation.
The SMART neuro-spheroids also permit the loading of a bioactive molecule (i.e., Notch inhibitor), resulting in
the synergy between suppressing neuroinhibitory signaling and promoting neural stem cell (NSC) survival and
differentiation. This novel technology platform will be further integrated into two clinically advanced models: i) an
inflammatory CNS organoid model incorporated with microglia, and ii) a spinal cord injury animal model. This
multidisciplinary study will provide a next-generation platform for research and cell therapy in neuro-regenerative
medicine from the perspective of developing a new 3D spheroid assembly method for enhanced stem cell
survival and suppression of inhibitory environment after CNS injuries.
We propose to verify our central hypothesis and achieve our objectives by addressing the following specific
aims: AIM #1 – Develop bioactive and biodegradable-nanoscaffold-based injectable 3D-Hybrid SMART
spheroids; AIM #2 – Investigate deep drug (Notch-i) delivery in SMART spheroids and study neuronal
differentiation of stem cells and axonal growth under neuroinhibitory and immune microenvironments
in vitro; AIM #3 – Determine the therapeutic effects of 3D-Hybrid SMART spheroids on the modulation of
neuroinhibitory microenvironments and the enhancement of SCI functional recovery in vivo. Collectively,
we anticipate that our proposed studies will provide an innovative, highly effective, and robust method for
developing therapeutic interventions for neurological disorders.
项目概要
目前基于干细胞的治疗中枢神经系统(CNS)损伤,如脊髓损伤(SCI),
干细胞存活率低、整合效率低、神经可塑性丧失以及
植入细胞无法控制的分化,所有这些都是由高度抑制和炎症引起的
具体来说,损伤部位的神经胶质增生会导致抑制性物质的分泌。
导致轴突再生不良和存活神经群体发芽的因素,导致
中枢神经系统在初次损伤后再生的内在局限性因此,迫切需要有效性。
产生源自患者干细胞的强大功能神经元群体的策略,并重新
为此,我们建议整合多个研究领域,包括
纳米技术、生物材料、神经科学和干细胞生物学,开发一种新型的基于纳米支架的干细胞
细胞组装平台,允许在干细胞过程中产生有利的微环境
体内干细胞命运的植入和控制,用于潜在的临床应用。
为了解决与中枢神经系统损伤和疾病相关的再生的根本障碍,我们
建议开发可注射的 3D-Hybrid SMART 神经球体,以增强干细胞治疗和有效
3D-Hybrid SMART 神经球由可生物降解的支架组装而成。
富含天然神经 ECM 的纳米材料可促进神经干细胞 (NSC) 存活和分化。
SMART 神经球体还允许加载生物活性分子(即 Notch 抑制剂),从而产生
抑制神经抑制信号传导和促进神经干细胞(NSC)存活之间的协同作用
这种新颖的技术平台将进一步集成到两个临床先进模型中:i)
结合小胶质细胞的炎性中枢神经系统类器官模型,以及 ii) 脊髓损伤动物模型。
多学科研究将为神经再生研究和细胞治疗提供下一代平台
从医学的角度开发增强干细胞的新3D球体组装方法
中枢神经系统损伤后抑制环境的生存和抑制。
我们建议通过解决以下具体问题来验证我们的中心假设并实现我们的目标
目标:AIM #1 – 开发基于生物活性和可生物降解纳米支架的可注射 3D-Hybrid SMART
球体;AIM #2 – 研究 SMART 球体中的深部药物 (Notch-i) 递送并研究神经元
神经抑制和免疫微环境下干细胞的分化和轴突生长
体外;AIM #3 – 确定 3D-Hybrid SMART 球体对调节的治疗效果
神经抑制微环境和 SCI 体内功能恢复的增强。
我们预计我们提出的研究将为以下方面提供一种创新、高效且稳健的方法:
制定针对神经系统疾病的治疗干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kibum Lee其他文献
Kibum Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kibum Lee', 18)}}的其他基金
Investigating mitochondrial dysfunction in neurodegeneration using A Nanoparticle-based Synthetic Mitochondrial DNA (mtDNA) Transcription Regulator
使用基于纳米颗粒的合成线粒体 DNA (mtDNA) 转录调节器研究神经退行性变中的线粒体功能障碍
- 批准号:
10679826 - 财政年份:2023
- 资助金额:
$ 39.1万 - 项目类别:
Nanoparticle-based synthetic transcription factor to induce stem cell myogenesis
基于纳米颗粒的合成转录因子诱导干细胞肌发生
- 批准号:
9461879 - 财政年份:2017
- 资助金额:
$ 39.1万 - 项目类别:
Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
- 批准号:
8623454 - 财政年份:2013
- 资助金额:
$ 39.1万 - 项目类别:
Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
- 批准号:
8737987 - 财政年份:2013
- 资助金额:
$ 39.1万 - 项目类别:
Combinatorial approaches for studying multiple cues regulating human pluripotent
研究调节人类多能性的多种线索的组合方法
- 批准号:
7848757 - 财政年份:2009
- 资助金额:
$ 39.1万 - 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
- 批准号:
10263913 - 财政年份:2000
- 资助金额:
$ 39.1万 - 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
- 批准号:
10430245 - 财政年份:2000
- 资助金额:
$ 39.1万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 39.1万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 39.1万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 39.1万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 39.1万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 39.1万 - 项目类别: