Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s

新型磁核/壳纳米颗粒干细胞疗法可指导神经系统

基本信息

  • 批准号:
    8623454
  • 负责人:
  • 金额:
    $ 19.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-30 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: The long-term goal of this application represents the development of novel magnetic core/shell nanoparticles (MCNPs) to deliver and spatiotemporally trigger the differentiation of stem cells to oligodendrocytes. With regard to spinal cord injury, neural stem/progenitor cell (NSPCs) transplantation has been shown to afford a number of favorable therapeutic effects. However, grafted NSPCs were found to differentiate primarily into astrocytes, which tend to hinder the effectiveness of transplantation. The guided differentiation of the grafted NSPCs into oligodendrocytes is highly desirable since these cells provide myelin sheaths around axons and thus enable fast propagation of nerve impulses in the CNS. To this end, the objective is to develop novel MCNPs, which have the dual functions of delivering a plasmid encoding Olig2, which has previously been reported to induce NSPC differentiation to oligodendrocytes, under a heat shock promoter and triggering Olig2 expression through magnetic hyperthermia (i.e. using an alternating magnetic field). To address these challenges, the following specific aims are proposed: Specific Aim 1. To prepare magnetic core/shell nanoparticles and inducible gene vectors for delivery into human induced pluirpotent stem cell-derived neural stem/progenitor cells (hiPSC-derived NSPCs). Specific Aim 2. To test the oligodendrocyte differentiation and remyelination ability of the engineered NSPCs in vitro after magnetic hyperthermia-induced gene expression. Magnetic nanoparticles have previously been applied for MRI, cell targeting, and drug/gene delivery. However, there is a critical gap between the existing knowledge and the clinical application of these nanoparticles to stem cell-based therapy. Therefore, the development of a novel MCNP-based stem cell therapy will demonstrate the multifunctional nature of MNPs for a clinically-relevant SCI treatment. In particular, compared to conventional gene therapies and cellular labeling methodologies, a MCNP-based approach would offer many advantages including: i) non-invasive magnetic resonance imaging (due to magnetic core) and Raman imaging (due to the gold shell) capabilities, ii) magnetic field-facilitated delivery ('magnetofection') of gene vectors into the stem cells, and iii) magnetic hyperthermia, which will be used to provide a mechanism for the activation of the delivered gene. Overall, the proposed MCNP approach will bring a methodology to the forefront that can allow the user to achieve spatial and temporal control over cellular differentiation, while potentially maintaining the neuroprotective properties innate to stem/precursor cells. In this way, scientists and clinicians can harness the full potential of stem cells (i.e. intrinsic therapeutic properties and controlled cell fate specification) for an enhanced SCI treatment.
描述:本应用的长期目标代表了新型磁芯/壳纳米颗粒(MCNP)的发展,以传递和时空触发干细胞分化为少突胶质细胞。关于脊髓损伤,已证明神经茎/祖细胞(NSPC)移植具有许多有利的治疗作用。然而,发现移植的NSPC主要分化为星形胶质细胞,这倾向于阻碍移植的有效性。非常需要移植的NSPC分化为少突胶质细胞,因为这些细胞在轴突周围提供髓鞘,因此可以在中枢神经系统中快速传播神经冲动。为此,目标是开发新型MCNP,其具有传递编码Olig2的质粒的双重功能,以前据报道,在热冲击启动子下,它诱导NSPC与少突胶质细胞的分化,并通过磁性高(即使用交替的磁场)触发OLIG2表达。为了应对这些挑战,提出了以下特定目的:特定目的1。准备磁芯/壳纳米颗粒和诱导型基因载体,以将其传递到人类诱导的pluirpotent pluirpotent pluirpotent的干细胞衍生的神经干/祖细胞(HIPSC衍生的NSPC)。具体目的2。测试磁性高热诱导的基因表达后,在体外工程NSPC的少突胶质细胞分化和再髓鞘能力。 先前已将磁性纳米颗粒用于MRI,细胞靶向和药物/基因递送。但是,这些纳米颗粒在基于干细胞的治疗中的现有知识与临床应用之间存在危险差异。因此,基于MCNP的新型干细胞疗法的发展将证明MNP的多功能性质用于临床上的SCI治疗。 In particular, compared to conventional gene therapies and cellular labeling methodologies, a MCNP-based approach would offer many advantages including: i) non-invasive magnetic resonance imaging (due to magnetic core) and Raman imaging (due to the gold shell) capabilities, ii) magnetic field-facilitated delivery ('magnetofection') of gene vectors into the stem cells, and iii) magnetic hyperthermia, which will be used to provide a活化基因的机制。总体而言,所提出的MCNP方法将使方法成为最前沿的方法,使用户能够实现对细胞分化的空间和时间控制,同时有可能维持神经保护性质与茎/前体细胞的先天性。这样, 科学家和临床医生可以利用干细胞的全部潜力(即内在的治疗特性和受控细胞命运规格)来增强SCI治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kibum Lee其他文献

Kibum Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kibum Lee', 18)}}的其他基金

Investigating mitochondrial dysfunction in neurodegeneration using A Nanoparticle-based Synthetic Mitochondrial DNA (mtDNA) Transcription Regulator
使用基于纳米颗粒的合成线粒体 DNA (mtDNA) 转录调节器研究神经退行性变中的线粒体功能障碍
  • 批准号:
    10679826
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Injectable Hybrid SMART spheroids to enhance stem cell therapy for CNS injuries
可注射混合 SMART 球体增强干细胞治疗中枢神经系统损伤
  • 批准号:
    10752890
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Nanoparticle-based synthetic transcription factor to induce stem cell myogenesis
基于纳米颗粒的合成转录因子诱导干细胞肌发生
  • 批准号:
    9461879
  • 财政年份:
    2017
  • 资助金额:
    $ 19.22万
  • 项目类别:
Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
  • 批准号:
    8737987
  • 财政年份:
    2013
  • 资助金额:
    $ 19.22万
  • 项目类别:
Combinatorial approaches for studying multiple cues regulating human pluripotent
研究调节人类多能性的多种线索的组合方法
  • 批准号:
    7848757
  • 财政年份:
    2009
  • 资助金额:
    $ 19.22万
  • 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
  • 批准号:
    10263913
  • 财政年份:
    2000
  • 资助金额:
    $ 19.22万
  • 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
  • 批准号:
    10430245
  • 财政年份:
    2000
  • 资助金额:
    $ 19.22万
  • 项目类别:

相似国自然基金

PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
  • 批准号:
    82301707
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轴突CD82调控星形胶质细胞TGF-β2/Smads信号通路改善青光眼视盘结构重塑的作用及机制探究
  • 批准号:
    82301200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
缺血性脑卒中后NDRG2通过STING/IFNβ信号轴抑制星形胶质细胞A1型极化的作用和机制研究
  • 批准号:
    82301548
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
  • 批准号:
    32371037
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
放射后早期神经元-星形胶质细胞脂肪酸代谢耦联对正常脑组织免疫微环境的重塑及其机制研究
  • 批准号:
    82373516
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
  • 批准号:
    10662883
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
  • 批准号:
    10844877
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Sex differences in traumatic brain injury: Neural circuit mediators of overlapping stress and physical effects
创伤性脑损伤的性别差异:重叠压力和物理效应的神经回路调节因素
  • 批准号:
    10751089
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
The Function of Sleep in Critical Period Plasticity
睡眠在可塑性关键期的作用
  • 批准号:
    10590177
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Identifying New Astrocytic Kir4.1 Channel Modulators for Treating Huntington's Disease
鉴定用于治疗亨廷顿病的新型星形细胞 Kir4.1 通道调节剂
  • 批准号:
    10681097
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了