Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
基本信息
- 批准号:8737987
- 负责人:
- 金额:$ 22.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAstrocytesAttentionAxonBiological AssayCell Differentiation processCell TherapyCellsDevelopmentDevicesDiseaseDrug TargetingEffectivenessEngineeringEnvironmentExposure toGene ActivationGene DeliveryGene ExpressionGenesGoalsGoldHeat shock proteinsHeat-Shock ResponseHeatingHumanHuman EngineeringHyperthermiaImageIn VitroInduced HyperthermiaInflammationInjuryKnowledgeLabelMagnetic Resonance ImagingMagnetismMethodologyMethodsMicrofluidicsModelingMyelin SheathNatural regenerationNatureNerveNeuronsOligodendrogliaPlasmidsPropertyRattusReporter GenesReportingRouteScientistSignal TransductionSpinal cord injuryStem cell transplantStem cellsTestingTherapeuticTherapeutic EffectTranscription factor genesTransfectionTransplantationZincaxon growthbasecell fate specificationclinical applicationclinically relevantculture platesexpression vectorgene therapyimprovediron oxidemagnetic fieldmyelinationnanomaterialsnanoparticleneural graftneuronal circuitryneuroregulationnovelnovel strategiesoverexpressionprecursor cellpromoterpublic health relevancerelating to nervous systemremyelinationstemstem cell differentiationstem cell therapytissue culturetranscription factortransmission processvectorwhite matter
项目摘要
DESCRIPTION: The long-term goal of this application represents the development of novel magnetic core/shell nanoparticles (MCNPs) to deliver and spatiotemporally trigger the differentiation of stem cells to oligodendrocytes. With regard to spinal cord injury, neural stem/progenitor cell (NSPCs) transplantation has been shown to afford a number of favorable therapeutic effects. However, grafted NSPCs were found to differentiate primarily into astrocytes, which tend to hinder the effectiveness of transplantation. The guided differentiation of the grafted NSPCs into oligodendrocytes is highly desirable since these cells provide myelin sheaths around axons and thus enable fast propagation of nerve impulses in the CNS. To this end, the objective is to develop novel MCNPs, which have the dual functions of delivering a plasmid encoding Olig2, which has previously been reported to induce NSPC differentiation to oligodendrocytes, under a heat shock promoter and triggering Olig2 expression through magnetic hyperthermia (i.e. using an alternating magnetic field). To address these challenges, the following specific aims are proposed: Specific Aim 1. To prepare magnetic core/shell nanoparticles and inducible gene vectors for delivery into human induced pluirpotent stem cell-derived neural stem/progenitor cells (hiPSC-derived NSPCs). Specific Aim 2. To test the oligodendrocyte differentiation and remyelination ability of the engineered NSPCs in vitro after magnetic hyperthermia-induced gene expression. Magnetic nanoparticles have previously been applied for MRI, cell targeting, and drug/gene delivery. However, there is a critical gap between the existing knowledge and the clinical application of these nanoparticles to stem cell-based therapy. Therefore, the development of a novel MCNP-based stem cell therapy will demonstrate the multifunctional nature of MNPs for a clinically-relevant SCI treatment. In particular, compared to conventional gene therapies and cellular labeling methodologies, a MCNP-based approach would offer many advantages including: i) non-invasive magnetic resonance imaging (due to magnetic core) and Raman imaging (due to the gold shell) capabilities, ii) magnetic field-facilitated delivery ('magnetofection') of gene vectors into the stem cells, and iii) magnetic hyperthermia, which will be used to provide a mechanism for the activation of the delivered gene. Overall, the proposed MCNP approach will bring a methodology to the forefront that can allow the user to achieve spatial and temporal control over cellular differentiation, while potentially maintaining the neuroprotective properties innate to stem/precursor cells. In this way,
scientists and clinicians can harness the full potential of stem cells (i.e. intrinsic therapeutic properties and controlled cell fate specification) for an enhanced SCI treatment.
描述:该应用的长期目标是开发新型磁性核/壳纳米颗粒(MCNP)来递送并时空触发干细胞向少突胶质细胞的分化。对于脊髓损伤,神经干/祖细胞(NSPC)移植已被证明可以提供许多有利的治疗效果。然而,移植的 NSPC 主要分化为星形胶质细胞,这往往会阻碍移植的有效性。移植的 NSPC 引导分化为少突胶质细胞是非常理想的,因为这些细胞在轴突周围提供髓鞘,从而使神经冲动在中枢神经系统中快速传播。为此,我们的目标是开发新型 MCNP,其具有双重功能:递送编码 Olig2 的质粒,此前有报道称,Olig2 在热休克启动子的作用下诱导 NSPC 分化为少突胶质细胞,并通过磁热疗触发 Olig2 表达(即磁热疗法)。使用交变磁场)。为了应对这些挑战,提出以下具体目标: 具体目标 1. 制备磁性核/壳纳米粒子和诱导基因载体,用于递送至人诱导多能干细胞衍生的神经干/祖细胞(hiPSC衍生的NSPC)中。具体目的2. 体外测试工程化NSPCs在磁热热诱导基因表达后的少突胶质细胞分化和髓鞘再生能力。 磁性纳米粒子此前已应用于 MRI、细胞靶向和药物/基因递送。然而,现有知识与这些纳米颗粒在干细胞治疗中的临床应用之间存在着重大差距。因此,开发一种新型的基于 MCNP 的干细胞疗法将证明 MNP 在临床相关 SCI 治疗中的多功能性质。特别是,与传统的基因疗法和细胞标记方法相比,基于 MCNP 的方法将提供许多优势,包括:i)非侵入性磁共振成像(由于磁芯)和拉曼成像(由于金壳)能力, ii) 磁场促进基因载体递送(“磁转染”)到干细胞中,以及 iii) 磁热疗,这将用于提供激活所递送基因的机制。总体而言,所提出的 MCNP 方法将把一种方法带到最前沿,使用户能够实现对细胞分化的空间和时间控制,同时可能保持干细胞/前体细胞固有的神经保护特性。这样,
科学家和临床医生可以充分利用干细胞的潜力(即内在的治疗特性和受控的细胞命运规范)来增强 SCI 治疗。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering Stem Cells for Biomedical Applications.
- DOI:10.1002/adhm.201400842
- 发表时间:2016-01-07
- 期刊:
- 影响因子:10
- 作者:Yin PT;Han E;Lee KB
- 通讯作者:Lee KB
Nanotechnology-Based Approaches for Guiding Neural Regeneration.
- DOI:10.1021/acs.accounts.5b00345
- 发表时间:2016-01-19
- 期刊:
- 影响因子:18.3
- 作者:Shah S;Solanki A;Lee KB
- 通讯作者:Lee KB
Multidimensional nanomaterials for the control of stem cell fate.
- DOI:10.1186/s40580-016-0083-9
- 发表时间:2016
- 期刊:
- 影响因子:11.7
- 作者:Chueng SD;Yang L;Zhang Y;Lee KB
- 通讯作者:Lee KB
Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis.
- DOI:10.1021/nn503431x
- 发表时间:2014-09-23
- 期刊:
- 影响因子:17.1
- 作者:Shah, Birju P.;Pasquale, Nicholas;De, Gejing;Tan, Tao;Ma, Jianjie;Lee, Ki-Bum
- 通讯作者:Lee, Ki-Bum
Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles.
- DOI:10.1021/acsnano.5b00641
- 发表时间:2015-05-26
- 期刊:
- 影响因子:17.1
- 作者:Lai J;Shah BP;Zhang Y;Yang L;Lee KB
- 通讯作者:Lee KB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kibum Lee其他文献
Kibum Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kibum Lee', 18)}}的其他基金
Investigating mitochondrial dysfunction in neurodegeneration using A Nanoparticle-based Synthetic Mitochondrial DNA (mtDNA) Transcription Regulator
使用基于纳米颗粒的合成线粒体 DNA (mtDNA) 转录调节器研究神经退行性变中的线粒体功能障碍
- 批准号:
10679826 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Injectable Hybrid SMART spheroids to enhance stem cell therapy for CNS injuries
可注射混合 SMART 球体增强干细胞治疗中枢神经系统损伤
- 批准号:
10752890 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Nanoparticle-based synthetic transcription factor to induce stem cell myogenesis
基于纳米颗粒的合成转录因子诱导干细胞肌发生
- 批准号:
9461879 - 财政年份:2017
- 资助金额:
$ 22.93万 - 项目类别:
Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
- 批准号:
8623454 - 财政年份:2013
- 资助金额:
$ 22.93万 - 项目类别:
Combinatorial approaches for studying multiple cues regulating human pluripotent
研究调节人类多能性的多种线索的组合方法
- 批准号:
7848757 - 财政年份:2009
- 资助金额:
$ 22.93万 - 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
- 批准号:
10263913 - 财政年份:2000
- 资助金额:
$ 22.93万 - 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
- 批准号:
10430245 - 财政年份:2000
- 资助金额:
$ 22.93万 - 项目类别:
相似国自然基金
基于星形胶质细胞介导Th17/Treg免疫平衡探讨电针调控缺血性脑卒中神经血管耦联的机制
- 批准号:82305361
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
- 批准号:32371037
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人工智能集成组学多维信息探究地黄饮子调控“星形胶质细胞-神经元耦合失衡”治疗AD的益肾填髓作用
- 批准号:82374422
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于TNC星形胶质细胞介导神经炎症引起血脑屏障损伤探讨针刺治疗慢性偏头痛的机制研究
- 批准号:82305389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
谷氨酰胺酶1介导的星形胶质细胞过度激活在阿尔茨海默病中的作用及机制研究
- 批准号:82301592
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Sex differences in traumatic brain injury: Neural circuit mediators of overlapping stress and physical effects
创伤性脑损伤的性别差异:重叠压力和物理效应的神经回路调节因素
- 批准号:
10751089 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
The Function of Sleep in Critical Period Plasticity
睡眠在可塑性关键期的作用
- 批准号:
10590177 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Identifying New Astrocytic Kir4.1 Channel Modulators for Treating Huntington's Disease
鉴定用于治疗亨廷顿病的新型星形细胞 Kir4.1 通道调节剂
- 批准号:
10681097 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别: