Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
基本信息
- 批准号:10587627
- 负责人:
- 金额:$ 30.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAcute DiseaseAcute Lung InjuryAddressAdherens JunctionAffectAnimal ModelBiologicalBiological ProcessBiomechanicsBiophysical ProcessBlood CirculationBlood VesselsCellsCessation of lifeChronicCrosslinkerCytoskeletonDataDevelopmentDiabetes MellitusEmbryonic DevelopmentEndothelial CellsEndotheliumEngineeringEnvironmentEpitheliumFutureHandednessHydrogelsIn VitroIntercellular JunctionsLeftLocationMaintenanceMechanicsMediatingModelingMolecularMorphogenesisOrganismPatientsPatternPermeabilityPhysiologicalPhysiologyProcessPropertyProtein IsoformsProtein Kinase CProteinsRegulationResearchRoleSepsisSignal TransductionSmokingStructureSubstrate InteractionSystemTight JunctionsTissuesTraction Force MicroscopyVascular DiseasesVascular PermeabilitiesVirus Diseasesadherent junctionbiophysical analysiscadherin 5cell typecrosslinkendothelial dysfunctionfascininterstitialinventionmechanical forcenovelorganizational structurescreening
项目摘要
The regulation of cell-cell junctions is essential for the biological functions of various tissues such as epithelium
and endothelium. Recent evidence in embryonic development and vascular physiology suggests that cell-cell
junctions are regulated by cell chirality, a universal but fundamental property of the cell. We pioneer in
research in cell chirality using engineered in vitro platforms. Here, using these platforms, we are to investigate
the biophysical mechanism associated with chirality at cell-cell junctions. While the principle may be shared
among many cell types, this study will focus on endothelial cells and the regulation of vascular permeability.
The endothelial cell layer is a semi-permeable barrier that tightly controls the passage of proteins and cells in
the bloodstream into the interstitial space and regulates the local environment of biological tissues in living
organisms. Cells achieve this vital function primarily through mediating paracellular transport by controlling the
opening and closure of cell-cell junctions. Protein Kinase C (PKC) activation has been associated with
endothelial dysfunction in chronic conditions such as diabetes and long-term smoking as well as acute
diseases such as sepsis, acute lung injury, and viral infection. Restoring and maintaining vascular integrity is
critical for body function and patient survival, especially for acute diseases. Recently, we have demonstrated
that PKC can reverse cell chirality, which mediates endothelial permeability. However, little is known about the
molecular mechanism of how PKC activation reverses endothelial chirality or that of how cell chirality alters
endothelial permeability. In this proposal, we hypothesize that PKC reverses cell chirality by reducing the level
of actin crosslinking and that cell chirality regulates cell-cell junctions (and therefore endothelial permeability)
biomechanically through actin tilting and VE-cadherin localization. We will pursue the following three aims: Aim
1. Identify the timing and location of biomechanical asymmetry responsible for multicellular chiral
morphogenesis using traction force microscopy (TFM). Combing 2D micropatterning for cell chirality and TFM
for cellular forces, we are to study in great detail of 2D collective symmetry breaking and to interrogate
underlying cellular biomechanical mechanisms. Aim 2. Determine cytoskeletal mechanisms underlying PKC
induced reversal of endothelial cell chirality. We will identify formin isoforms and actin crosslinkers involved in
this process, and their regulation by PKC signaling. Aim 3. Investigate the role of chirality mismatch in the
intercellular gap formation and endothelial permeability. We will quantify actin structure and dynamics during
the intercellular junctions and examine how the mismatch of cell chirality can lead to actin remodeling and
induce intercellular gap formation.
If successful, we will be able to identify the biophysical mechanisms, allowing for the potential development of
novel, specific therapies based on cell chirality for endothelial dysfunction. With data obtained from this
proposal, we will seek further support and examine our findings with animal models.
细胞与细胞连接的调节对于上皮等各种组织的生物学功能至关重要
和内皮细胞。胚胎发育和血管生理学的最新证据表明,细胞-细胞
连接受到细胞手性的调节,这是细胞的普遍但基本的特性。我们率先在
使用工程体外平台研究细胞手性。在这里,利用这些平台,我们要调查
与细胞-细胞连接处的手性相关的生物物理机制。虽然原理可能是共享的
在许多细胞类型中,本研究将重点关注内皮细胞和血管通透性的调节。
内皮细胞层是一个半透性屏障,严格控制蛋白质和细胞的通过
血液进入细胞间隙,调节生物组织的局部环境
有机体。细胞主要通过控制旁细胞运输来实现这一重要功能
细胞与细胞连接的打开和关闭。蛋白激酶 C (PKC) 激活与
糖尿病和长期吸烟等慢性疾病以及急性疾病中的内皮功能障碍
败血症、急性肺损伤和病毒感染等疾病。恢复和维持血管完整性是
对于身体功能和患者生存至关重要,特别是对于急性疾病。最近,我们展示了
PKC 可以逆转细胞手性,从而介导内皮通透性。然而,人们对此知之甚少
PKC 激活如何逆转内皮手性或细胞手性如何改变的分子机制
内皮通透性。在这个提议中,我们假设 PKC 通过降低细胞手性水平来逆转细胞手性。
肌动蛋白交联以及细胞手性调节细胞间连接(从而调节内皮通透性)
生物力学上通过肌动蛋白倾斜和 VE-钙粘蛋白定位。我们将追求以下三个目标: 目标
1. 确定导致多细胞手性的生物力学不对称的时间和位置
使用牵引力显微镜(TFM)进行形态发生。结合细胞手性和 TFM 的 2D 微图案
对于细胞力,我们将详细研究二维集体对称性破缺并探究
潜在的细胞生物力学机制。目标 2. 确定 PKC 的细胞骨架机制
诱导内皮细胞手性逆转。我们将鉴定参与的福尔米亚型和肌动蛋白交联剂
这个过程及其受 PKC 信号传导的调节。目标 3. 研究手性失配在
细胞间间隙的形成和内皮细胞的通透性。我们将量化肌动蛋白结构和动力学
细胞间连接并检查细胞手性的不匹配如何导致肌动蛋白重塑和
诱导细胞间隙形成。
如果成功,我们将能够确定生物物理机制,从而实现潜在的发展
基于细胞手性治疗内皮功能障碍的新颖、特异性疗法。通过由此获得的数据
根据建议,我们将寻求进一步的支持并用动物模型检验我们的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Q. Wan其他文献
Leo Q. Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Q. Wan', 18)}}的其他基金
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10650246 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10838024 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10448260 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Cell Chirality Based In Vitro Models For Embryonic Development and Abnormalities
基于细胞手性的胚胎发育和异常体外模型
- 批准号:
8757997 - 财政年份:2014
- 资助金额:
$ 30.55万 - 项目类别:
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Targeting the MICAL2 signaling axis in pancreatic cancer
靶向胰腺癌中的 MICAL2 信号轴
- 批准号:
10513236 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
The role of myosin II in tendon repair under glucose control
肌球蛋白 II 在葡萄糖控制下肌腱修复中的作用
- 批准号:
10649584 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别: