Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
基本信息
- 批准号:10587627
- 负责人:
- 金额:$ 30.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAcute DiseaseAcute Lung InjuryAddressAdherens JunctionAffectAnimal ModelBiologicalBiological ProcessBiomechanicsBiophysical ProcessBlood CirculationBlood VesselsCellsCessation of lifeChronicCrosslinkerCytoskeletonDataDevelopmentDiabetes MellitusEmbryonic DevelopmentEndothelial CellsEndotheliumEngineeringEnvironmentEpitheliumFutureHandednessHydrogelsIn VitroIntercellular JunctionsLeftLocationMaintenanceMechanicsMediatingModelingMolecularMorphogenesisOrganismPatientsPatternPermeabilityPhysiologicalPhysiologyProcessPropertyProtein IsoformsProtein Kinase CProteinsRegulationResearchRoleSepsisSignal TransductionSmokingStructureSubstrate InteractionSystemTight JunctionsTissuesTraction Force MicroscopyVascular DiseasesVascular PermeabilitiesVirus Diseasesadherent junctionbiophysical analysiscadherin 5cell typecrosslinkendothelial dysfunctionfascininterstitialinventionmechanical forcenovelorganizational structurescreening
项目摘要
The regulation of cell-cell junctions is essential for the biological functions of various tissues such as epithelium
and endothelium. Recent evidence in embryonic development and vascular physiology suggests that cell-cell
junctions are regulated by cell chirality, a universal but fundamental property of the cell. We pioneer in
research in cell chirality using engineered in vitro platforms. Here, using these platforms, we are to investigate
the biophysical mechanism associated with chirality at cell-cell junctions. While the principle may be shared
among many cell types, this study will focus on endothelial cells and the regulation of vascular permeability.
The endothelial cell layer is a semi-permeable barrier that tightly controls the passage of proteins and cells in
the bloodstream into the interstitial space and regulates the local environment of biological tissues in living
organisms. Cells achieve this vital function primarily through mediating paracellular transport by controlling the
opening and closure of cell-cell junctions. Protein Kinase C (PKC) activation has been associated with
endothelial dysfunction in chronic conditions such as diabetes and long-term smoking as well as acute
diseases such as sepsis, acute lung injury, and viral infection. Restoring and maintaining vascular integrity is
critical for body function and patient survival, especially for acute diseases. Recently, we have demonstrated
that PKC can reverse cell chirality, which mediates endothelial permeability. However, little is known about the
molecular mechanism of how PKC activation reverses endothelial chirality or that of how cell chirality alters
endothelial permeability. In this proposal, we hypothesize that PKC reverses cell chirality by reducing the level
of actin crosslinking and that cell chirality regulates cell-cell junctions (and therefore endothelial permeability)
biomechanically through actin tilting and VE-cadherin localization. We will pursue the following three aims: Aim
1. Identify the timing and location of biomechanical asymmetry responsible for multicellular chiral
morphogenesis using traction force microscopy (TFM). Combing 2D micropatterning for cell chirality and TFM
for cellular forces, we are to study in great detail of 2D collective symmetry breaking and to interrogate
underlying cellular biomechanical mechanisms. Aim 2. Determine cytoskeletal mechanisms underlying PKC
induced reversal of endothelial cell chirality. We will identify formin isoforms and actin crosslinkers involved in
this process, and their regulation by PKC signaling. Aim 3. Investigate the role of chirality mismatch in the
intercellular gap formation and endothelial permeability. We will quantify actin structure and dynamics during
the intercellular junctions and examine how the mismatch of cell chirality can lead to actin remodeling and
induce intercellular gap formation.
If successful, we will be able to identify the biophysical mechanisms, allowing for the potential development of
novel, specific therapies based on cell chirality for endothelial dysfunction. With data obtained from this
proposal, we will seek further support and examine our findings with animal models.
细胞 - 细胞连接的调节对于各种组织的生物学功能至关重要
和内皮。胚胎发育和血管生理学的最新证据表明细胞细胞
连接受细胞手性的调节,细胞手性是细胞的通用但基本特性。我们开拓了
使用工程化的体外平台研究细胞手性研究。在这里,使用这些平台,我们将调查
与细胞 - 细胞连接处的手性相关的生物物理机制。虽然可以共享原则
在许多细胞类型中,这项研究将集中于内皮细胞和血管渗透性的调节。
内皮细胞层是一个半渗透的屏障,它紧紧控制蛋白质和细胞中的通过
血液进入天质空间,并调节生物中生物组织的局部环境
有机体。细胞主要通过控制副细胞运输来实现这一重要功能
细胞电池连接的开放和闭合。蛋白激酶C(PKC)激活与
在糖尿病和长期吸烟等慢性疾病中的内皮功能障碍以及急性
败血症,急性肺损伤和病毒感染等疾病。恢复和维持血管完整性是
对于身体功能和患者生存至关重要,特别是对于急性疾病。最近,我们已经证明了
PKC可以逆转细胞手性,从而介导内皮渗透性。但是,关于
PKC激活如何逆转内皮手性或细胞手性改变的分子机制
内皮渗透性。在此提案中,我们假设PKC通过降低水平逆转了细胞手性
肌动蛋白的交联和细胞手性调节细胞 - 细胞连接(因此内皮通透性)
通过肌动蛋白倾斜和VE-钙粘蛋白定位在生物力学上。我们将追求以下三个目标:目标
1。确定负责多细胞手性的生物力学不对称的时间和位置
使用牵引力显微镜(TFM)的形态发生。梳理2D微图案,用于细胞手性和TFM
对于细胞力,我们将详细研究2D集体对称性破坏并询问
潜在的细胞生物力学机制。 AIM 2。确定PKC的细胞骨架机制
诱发内皮细胞手性的逆转。我们将确定参与参与
这个过程及其对PKC信号的调节。目标3。调查手性不匹配在
细胞间间隙形成和内皮渗透性。我们将量化肌动蛋白的结构和动态
细胞间连接处并检查细胞手性不匹配如何导致肌动蛋白的重塑和
诱导细胞间间隙形成。
如果成功,我们将能够识别生物物理机制,从而允许潜在的发展
基于细胞手性的新型特定疗法,用于内皮功能障碍。从中获得的数据
提案,我们将寻求进一步的支持,并通过动物模型来检查我们的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Q. Wan其他文献
Leo Q. Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Q. Wan', 18)}}的其他基金
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10650246 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10838024 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10448260 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Cell Chirality Based In Vitro Models For Embryonic Development and Abnormalities
基于细胞手性的胚胎发育和异常体外模型
- 批准号:
8757997 - 财政年份:2014
- 资助金额:
$ 30.55万 - 项目类别:
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Targeting the MICAL2 signaling axis in pancreatic cancer
靶向胰腺癌中的 MICAL2 信号轴
- 批准号:
10513236 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
The role of myosin II in tendon repair under glucose control
肌球蛋白 II 在葡萄糖控制下肌腱修复中的作用
- 批准号:
10649584 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别: