Small Scale Robotics for Automated Dental Biofilm Theranostics
用于自动化牙科生物膜治疗的小型机器人
基本信息
- 批准号:10658028
- 负责人:
- 金额:$ 63.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAnatomyApicalAreaBiologicalCell SurvivalClinicalCollectionComplexCoupledDataDentalDetectionDevelopmentDevicesDiagnosisDiagnosticDisinfectionDrug Delivery SystemsElectromagneticsEndodonticsEnsureExcisionFamily suidaeFoundationsFutureGeometryHumanIn SituInfectionIrrigationJawLicensingLocationMagnetismMammalian CellManualsMechanicsMedicineMethodsMicrobial BiofilmsModalityModelingMoldsMorphologyMotionMovementNanotechnologyNeedlesOralOral cavityOutcomePerformancePeroxidasesPharmaceutical PreparationsPolymersPre-Clinical ModelProceduresPropertyPulp CanalsRetrievalRobotRoboticsSamplingShapesSiteSmall Business Innovation Research GrantStructureSystemTechnologyTestingTherapeuticTooth structureUltrasonicsVisualizationantimicrobialbactericideclinical applicationcommercializationconventional therapycostcytotoxicitydental biofilmdesignefficacy studyefficacy testingfollow-upimprovedin vivoiron oxide nanoparticlemagnetic fieldmicrorobotnanoparticlenew technologynovel strategiesoral biofilmparticleperiapicalpolymicrobial biofilmprototyperesponserobotic devicerobotic systemsoft tissuestem cellstheranosticstongue papillatreatment optimization
项目摘要
PROJECT ABSTRACT
Oral biofilm-related infections remain a persistent and costly clinical problem. Existing treatments are unable to
simultaneously kill and physically disrupt biofilms and require manual biofilm removal procedures that are
cumbersome with reduced efficacy in difficult to reach areas such as endodontic canal systems. Furthermore,
options for sample retrieval for diagnostics during clinical procedures are limited. Efficacious, automated
technologies capable of precisely targeting complex anatomical areas are needed to retrieve samples, kill and
remove biofilms, and deliver drugs on site. We propose a novel approach combining nanotechnology and
robotics to develop the first automated system for targeted disinfection, removal, and sampling of endodontic
biofilms. We have designed small-scale robots using catalytic nanoparticles as building blocks that display
tether-free controlled motion with multifunctionality. Our approach utilizes iron oxide nanoparticles (IONPs) with
dual catalytic-magnetic properties that (i) generate bactericidal and biofilm degrading reactive molecules in situ,
and (ii) remove the disrupted biofilm via magnetic-field driven robotic assemblies termed Catalytic Antibiofilm
Robots (CARs). Preliminary data demonstrate that CARs locally remove and collect biofilms with high precision
and efficacy in comparison to conventional treatment, including confined endodontic spaces. By tuning the
magneto-catalytic properties and control of the CARs systems, we will develop robotic device
prototypes that fit the oral cavity for simultaneous endodontic biofilm treatment, removal and sample
retrieval. We propose to further improve IONP-made robots coupled with a clinical electromagnetic controller
to develop two CARs-based oral biodevice platforms. (Aim 1) CAR1s, formed from aggregated IONP, will be
used for catalytic bacterial killing, biofilm treatment, and sample retrieval from root canals for diagnostic analysis.
We will identify key parameters for CAR1s improvement, assessing magnetic control, bioactivity and
visualization/tracking. CAR1s will be evaluated for targeting difficult-to-reach areas, such as C-shaped/curved
canals and isthmus, as well as treating and retrieving biofilms. We will characterize and improve CAR1 control
first using 3D-printed tooth replicas with diverse canal morphologies to improve movement and controllability,
followed by testing our system using ex vivo extracted tooth/typodont and pig jaw models. (Aim 2) CAR2s will
be fabricated by 3D micromolding functional polymers with embedded IONPs for biofilm disruption, retrieval,
and drug delivery at the apical region. We will optimize magnetic control and tracking, antibiofilm activity and
triggered cargo delivery, testing efficacy to remove and retrieve biofilms. We will assess bioactivity using mixed-
species biofilms and maneuverability to the apical region of the root canal recapitulated in 3D-printed teeth and
ex vivo models, while rigorously evaluating the robotic device in geometries suited to the oral cavity with
comparisons against conventional treatment. We expect the outcomes of the proposed studies will lead to the
first robotic biodevice system developed for automated biofilm theranostics for applications in dental medicine.
项目摘要
口腔生物膜相关感染仍然是一个持续存在且代价高昂的临床问题。现有的治疗方法无法
同时杀死和物理破坏生物膜,需要手动去除生物膜程序
在难以到达的区域(例如牙髓管系统)中,操作繁琐且功效降低。此外,
在临床操作过程中用于诊断的样本检索选项是有限的。高效、自动化
需要能够精确瞄准复杂解剖区域的技术来检索样本、杀死和
去除生物膜,并在现场输送药物。我们提出了一种结合纳米技术和
机器人技术开发第一个自动化系统,用于牙髓的有针对性的消毒、去除和取样
生物膜。我们设计了使用催化纳米颗粒作为构建块的小型机器人,可以显示
具有多功能性的无系绳控制运动。我们的方法利用氧化铁纳米粒子(IONP)
双重催化磁性特性,(i)原位产生杀菌和生物膜降解反应分子,
(ii) 通过磁场驱动的机器人组件(称为催化抗菌膜)去除破坏的生物膜
机器人(汽车)。初步数据表明,CAR 能够高精度地局部去除和收集生物膜
以及与传统治疗(包括有限的牙髓空间)相比的疗效。通过调整
CAR系统的磁催化特性和控制,我们将开发机器人设备
适合口腔的原型,可同时进行牙髓生物膜治疗、去除和取样
检索。我们建议进一步改进 IONP 制造的机器人与临床电磁控制器的结合
开发两个基于 CAR 的口腔生物设备平台。 (目标 1)由聚集的 IONP 形成的 CAR1 将
用于催化细菌杀灭、生物膜处理以及从根管中取出样本进行诊断分析。
我们将确定 CAR1 改进的关键参数,评估磁控制、生物活性和
可视化/跟踪。 CAR1 将针对难以到达的区域(例如 C 形/弯曲区域)进行评估
运河和峡部,以及治疗和恢复生物膜。我们将表征并改进 CAR1 控制
首先使用具有不同根管形态的 3D 打印牙齿复制品来改善运动和可控性,
然后使用离体提取的牙齿/typodont 和猪颌模型测试我们的系统。 (目标 2)CAR2 将
由嵌入 IONP 的 3D 微成型功能聚合物制成,用于生物膜破坏、恢复、
和心尖区域的药物输送。我们将优化磁控制和跟踪、抗菌膜活性和
触发货物输送,测试去除和回收生物膜的功效。我们将使用混合评估生物活性
3D 打印牙齿中重现的物种生物膜和根管顶端区域的可操作性
离体模型,同时严格评估机器人设备的适合口腔的几何形状
与传统治疗的比较。我们预计拟议研究的结果将导致
第一个为牙科医学应用的自动生物膜治疗诊断而开发的机器人生物设备系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Koo其他文献
Hyun Koo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Koo', 18)}}的其他基金
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441517 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Treatment
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10427076 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656244 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10270570 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441517 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441630 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10414192 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10441630 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Advanced Training at the Interface of Engineering and Oral-Craniofacial Sciences
工程与口腔颅面科学交叉领域的高级培训
- 批准号:
10656236 - 财政年份:2021
- 资助金额:
$ 63.21万 - 项目类别:
Biofilm Elimination and Caries Prevention using Multifunctional Nanocatalysts
使用多功能纳米催化剂消除生物膜和预防龋齿
- 批准号:
10493429 - 财政年份:2016
- 资助金额:
$ 63.21万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 63.21万 - 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
- 批准号:
10672642 - 财政年份:2023
- 资助金额:
$ 63.21万 - 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 63.21万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 63.21万 - 项目类别: