Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
基本信息
- 批准号:10660234
- 负责人:
- 金额:$ 38.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectBioconductorBioinformaticsCOVID-19COVID-19 patientCardiovascular DiseasesCessation of lifeCharacteristicsClinicalCodeCollaborationsCommunitiesCompanionsComplexComputer softwareComputing MethodologiesCritical IllnessDataData AnalysesDiabetes MellitusDiseaseDisease ProgressionEcosystemEnvironmental ExposureFutureGalaxyGenesGeneticGenetic ModelsGenetic VariationGrowthHealthHigh-Throughput Nucleotide SequencingHumanHuman CharacteristicsHuman MicrobiomeInfantInflammatory Bowel DiseasesLinkLongitudinal StudiesMalignant NeoplasmsMechanical ventilationMediatingMetagenomicsMethodsMicrobeNatureNew YorkObesityOrganOutcomePathway interactionsPerformancePhenotypePhylogenetic AnalysisPopulation GeneticsProcessPropertyResearch DesignResearch MethodologyResearch PersonnelRiskRoleSamplingSchemeSourceStatistical ModelsStructureSystemSystems AnalysisTaxonomyTechniquesTechnologyTimeTreesUniversitiesVariantWorkanalytical methodanalytical toolbacterial communitybioinformatics toolcohortdesigndisorder riskexperiencegene functiongenetic variantgenome-wideholistic approachhuman microbiotaimprovedinnovationinsightmetagenomic sequencingmicrobialmicrobiomemicrobiome analysismicrobiome researchmicrobiome signaturemultidisciplinarynovelnovel strategiesnovel therapeuticsopen sourcepopulation basedpreventrepositoryrespiratory microbiomerisk predictionsoftware developmenttooltraitweb based interface
项目摘要
With the steady growth of longitudinal microbiome studies, microbiomes are now on the cusp of clinical utility for
several diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Motivated by the PI’s
broad microbiome collaborations at New York University Langone Health and building upon our extensive and
rich experience in developing novel methods to analyze emerging omics data, we propose to develop two sets
of novel analytic methods to address two computational and analytical challenges in pushing microbiome
research to reach its full clinical potential. In Aim 1, we will take a granular approach to dive into the raw
metagenomics sequencing data and investigate how to analytically detect and differentiate closely related
microbial strains within species. Specifically, we hypothesize that utilizing longitudinal raw metagenomics
sequencing data will produce a more efficient and accurate genetic variants calling scheme than existing
approaches, and we will develop a novel longitudinal metagenomics sequencing processing system to capture
genomic variants, identify primary and secondary strains, and quantify strain proportions within species. The
proposed new tool will be further used to understand how the microbial strains evolve along the time and how to
link the structure variations with host-specific traits. In Aim 2, starting from the recognition of the human
microbiota as a complex ecosystem, we will take a holistic approach to develop a suite of microbial risk scores
to capture the multifaceted characteristics of the microbiome and implement these scores in disease risk
prediction in combination with other omics data. In Aim 3, we will apply the proposed pipelines to two finished
longitudinal microbiome studies and five on-going large scale population-based cancer microbiome studies.
Through the extensive real data analyses, we will validate the proposed methods, illustrate new applications,
and explore future directions. In addition, we will develop, distribute to the community, and provide support for
open-source software packages implementing these methods. The proposal is innovative because it integrates
the overall study design, upstream bioinformatics raw sequencing processing techniques and downstream
statistical modeling with clinical outcomes into a streamlined analytic process to produce unbiased and efficient
analytic tools for microbiome research in longitudinal studies. The proposed work will be conducted by an
experienced multidisciplinary study team. If this work succeeds, it will facilitate the understanding of how bacterial
communities affect human health and disease, and ultimately lead to new approaches to treat or prevent a variety
of health conditions.
随着纵向微生物组研究的稳步增长,微生物组现在正处于临床应用的风口浪尖
PI 引发的多种疾病,包括肥胖、糖尿病、炎症性肠病和癌症。
纽约大学朗格健康中心广泛的微生物组合作,并建立在我们广泛和
在开发分析新兴组学数据的新方法方面拥有丰富的经验,我们建议开发两套方法
新颖的分析方法来解决推动微生物组发展的两个计算和分析挑战
研究以充分发挥其临床潜力 在目标 1 中,我们将采取精细的方法深入研究原始数据。
宏基因组测序数据并研究如何分析检测和区分密切相关的
具体来说,我们利用原始宏基因组学捕获了该纵向数据。
测序数据将产生比现有的更有效、更准确的遗传变异识别方案
方法,我们将开发一种新颖的纵向宏基因组测序处理系统来捕获
基因组变异,识别主要和次要菌株,并量化物种内的菌株比例。
提出的新工具将进一步用于了解微生物菌株如何随时间演变以及如何
在目标 2 中,从人类的识别开始,将结构变异与宿主特异性联系起来。
微生物群作为一个复杂的生态系统,我们将采取整体方法来制定一套微生物风险评分
捕捉微生物组的多方面特征并将这些评分应用于疾病风险
在目标 3 中,我们将结合其他组学数据进行预测。
纵向微生物组研究和五项正在进行的大规模基于人群的癌症微生物组研究。
通过广泛的实际数据分析,我们将验证所提出的方法,说明新的应用,
此外,我们还将开发、分发给社区并提供支持。
该提案具有创新性,因为它集成了这些方法。
总体研究设计、上游生物信息学原始测序处理技术和下游
将临床结果的统计模型转化为简化的分析过程,以产生公正且高效的结果
纵向研究中微生物组研究的分析工具。拟议的工作将由一个人进行。
经验丰富的多学科研究团队如果这项工作成功,将有助于了解细菌是如何运作的。
社区影响人类健康和疾病,并最终导致治疗或预防各种疾病的新方法
的健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huilin Li其他文献
Huilin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huilin Li', 18)}}的其他基金
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10662534 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10521596 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
The structure and function of eukaryotic protein glycosylation enzymes
真核蛋白质糖基化酶的结构和功能
- 批准号:
10412104 - 财政年份:2018
- 资助金额:
$ 38.14万 - 项目类别:
Molecular mechanisms of protein glycosylation and trafficking
蛋白质糖基化和运输的分子机制
- 批准号:
10655796 - 财政年份:2018
- 资助金额:
$ 38.14万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
- 批准号:
10629262 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
- 批准号:
10453133 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
Copy Number Variation Identification and Association Study on Alzheimer's Disease Whole Genome Sequencing Data
阿尔茨海默病全基因组测序数据拷贝数变异鉴定及关联研究
- 批准号:
10301113 - 财政年份:2021
- 资助金额:
$ 38.14万 - 项目类别:
Statistical Methods for Integrative Analysis of Large Scale Neuroimaging Data
大规模神经影像数据综合分析的统计方法
- 批准号:
10647855 - 财政年份:2021
- 资助金额:
$ 38.14万 - 项目类别: