Next generation axonal quantification and classification using AI

使用人工智能的下一代轴突量化和分类

基本信息

  • 批准号:
    10698843
  • 负责人:
  • 金额:
    $ 87.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-19 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Abstract This Phase II project describes the commercial development of HyperAxon™, highly innovative software for performing automated segmentation, tracing, reconstruction and quantitative analysis of all axonal fibers (with and without signs of acute axonal injury) visible in two- and three-dimensional (2D and 3D) microscopy images of central nervous system (CNS) areas, even those with extremely high axonal fiber density. Accurate and rigorous analysis of all axonal fibers visible in 3D and 2D microscopy images of CNS tissue of non-transgenic and transgenic animal models as well as in human post mortem CNS tissue promises to enable researchers to gain novel insights into physiological neural network connectivity patterns as well as into the neuropathological underpinnings of alterations in connectivity associated with human neuropsychiatric and neurological disorders. However, this cannot be achieved with contemporary, computer-assisted tracing and reconstruction methods, which currently are the gold standard for investigating axonal fibers, because these methods primarily address tracing and reconstruction of only a limited number of individual axonal fibers. During Phase I we created HyperAxon prototype software by leveraging the original, lab-built technology Learning-based Tracing of Dense Axonal Fibers created at MIT Lincoln Laboratory (MIT LL) (Lexington, MA) and extending this technology with several new, specialized deep neural networks. Furthermore, we validated that our approach will be successful in research applications. All specific aims of Phase I were fully completed, demonstrating feasibility of successfully developing HyperAxon. The game-changing innovation in HyperAxon is the ability to automatically (i) segment, trace and reconstruct all axonal fibers visible in 3D and 2D microscopy images of CNS areas with high axonal fiber density, (ii) identify axonal branch points, (iii) resolve axonal fibers of passage in fiber tracts from those in axonal terminal fields, (iv) identify axonal fibers showing acute axonal injury and (v) precisely quantify alterations in number and density of axonal fibers in CNS tissue. For widespread dissemination of this important new technology we plan to commercialize the HyperAxon software at the end of Phase II as both a cloud-based “software as a service” running on Amazon Web Services (AWS) and traditional software application running on local institutional computers. We are convinced that HyperAxon will be impactful in the field of neuroscience research and will enable substantial advancements in research on alterations in CNS circuitry associated with neurodevelopmental, neuropsychiatric, neurodegenerative and neurological disorders. Ultimately, this will result in an improved basis for developing novel treatment strategies for a wide spectrum of complex brain diseases. In Phase I we demonstrated feasibility of this novel technology by developing prototype software; work in Phase II will focus on creating the full functionality of HyperAxon for commercial release. During Phase II we will perform extensive product validation and usability studies of HyperAxon in close collaboration with MIT LL and our academic collaboration partners. A competing technology is not available.
抽象的 该第二阶段项目描述了 HyperAxon™ 的商业开发,这是一款高度创新的软件,用于 对所有轴突纤维进行自动分割、追踪、重建和定量分析( 并且没有急性轴突损伤的迹象)在二维和三维(2D 和 3D)显微镜图像中可见 中枢神经系统 (CNS) 区域,甚至轴突纤维密度极高的区域。 对非转基因 CNS 组织的 3D 和 2D 显微镜图像中可见的所有轴突纤维进行严格分析 转基因动物模型以及人类死后中枢神经系统组织有望使研究人员能够 获得对生理神经网络连接模式以及神经病理学的新见解 与人类神经精神和神经系统疾病相关的连通性改变的基础。 然而,现代计算机辅助追踪和重建方法无法实现这一点, 目前是研究轴突纤维的黄金标准,因为这些方法主要解决 在第一阶段,我们创建了仅有限数量的单个轴突纤维的追踪和重建。 HyperAxon 原型软件利用原始的实验室构建技术基于学习的密集追踪 Axonal Fibers 在麻省理工学院林肯实验室 (MIT LL)(马萨诸塞州列克星敦)创建,并将该技术扩展为 此外,我们验证了我们的方法将会成功。 第一阶段的所有具体目标均已全面完成,证明了其可行性。 成功开发 HyperAxon 的颠覆性创新是能够自动执行任务。 (i) 分割、追踪和重建中枢神经系统区域 3D 和 2D 显微镜图像中可见的所有轴突纤维 高轴突纤维密度,(ii) 识别轴突分支点,(iii) 解析纤维束中通道的轴突纤维 从轴突末端区域中,(iv)识别显示急性轴突损伤的轴突纤维,以及(v)精确地 改变中枢神经系统组织中轴突纤维的数量和密度的量化,以实现这一点的广泛传播。 重要的新技术,我们计划在第二阶段结束时将 HyperAxon 软件商业化,作为 在 Amazon Web Services (AWS) 和传统软件上运行的基于云的“软件即服务” 我们相信 HyperAxon 将在本地机构计算机上运行的应用程序产生影响。 神经科学研究领域,将使中枢神经系统改变的研究取得实质性进展 与神经发育、神经精神、神经退行性和神经系统疾病相关的电路。 最终,这将为开发针对广泛疾病的新治疗策略奠定基础。 在第一阶段,我们通过开发原型证明了这项新技术的可行性。 软件;第二阶段的工作将集中于创建完整的 HyperAxon 以供商业发布。 第二阶段,我们将密切合作对 HyperAxon 进行广泛的产品验证和可用性研究 与 MIT LL 和我们的学术合作伙伴没有竞争的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JACOB R GLASER其他文献

JACOB R GLASER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JACOB R GLASER', 18)}}的其他基金

Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
  • 批准号:
    10541683
  • 财政年份:
    2022
  • 资助金额:
    $ 87.3万
  • 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
  • 批准号:
    10603310
  • 财政年份:
    2022
  • 资助金额:
    $ 87.3万
  • 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
  • 批准号:
    10755027
  • 财政年份:
    2022
  • 资助金额:
    $ 87.3万
  • 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
  • 批准号:
    10384932
  • 财政年份:
    2022
  • 资助金额:
    $ 87.3万
  • 项目类别:
NeuroExM
神经ExM
  • 批准号:
    10156966
  • 财政年份:
    2021
  • 资助金额:
    $ 87.3万
  • 项目类别:
AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
  • 批准号:
    10258638
  • 财政年份:
    2021
  • 资助金额:
    $ 87.3万
  • 项目类别:
NeuroExM
神经ExM
  • 批准号:
    10686269
  • 财政年份:
    2021
  • 资助金额:
    $ 87.3万
  • 项目类别:
ClearScope
清晰范围
  • 批准号:
    10019728
  • 财政年份:
    2018
  • 资助金额:
    $ 87.3万
  • 项目类别:
ClearScope
清晰范围
  • 批准号:
    10403446
  • 财政年份:
    2018
  • 资助金额:
    $ 87.3万
  • 项目类别:
ClearScope
清晰范围
  • 批准号:
    10159328
  • 财政年份:
    2018
  • 资助金额:
    $ 87.3万
  • 项目类别:

相似国自然基金

巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
  • 批准号:
    82304503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
  • 批准号:
    82374256
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
  • 批准号:
    82300771
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
  • 批准号:
    82374209
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
  • 批准号:
    10734465
  • 财政年份:
    2023
  • 资助金额:
    $ 87.3万
  • 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
  • 批准号:
    10727361
  • 财政年份:
    2023
  • 资助金额:
    $ 87.3万
  • 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 87.3万
  • 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 87.3万
  • 项目类别:
Regulatory Mechanisms Linking Spatial Gene Control and Genome Organization
连接空间基因控制和基因组组织的调控机制
  • 批准号:
    10712390
  • 财政年份:
    2023
  • 资助金额:
    $ 87.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了