AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
基本信息
- 批准号:10258638
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-09 至 2022-07-08
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAddressAgarAgingAlzheimer&aposs DiseaseAnimal BehaviorAnimal ModelAppearanceArtificial IntelligenceBehaviorBehavioralBehavioral ResearchBiological AssayBiotechnologyBrainBrain DiseasesCaenorhabditis elegansClassificationCollaborationsComplexComputer softwareDataDevelopmentDiseaseDopamineEukaryotaFeasibility StudiesGlutamatesGoalsHumanImageIndividualLaboratoriesLegal patentLightingLocomotionLongevityLongitudinal StudiesMarket ResearchMassachusettsMeasuresMicroscopeMolecularMotionMusNamesNational Institute of Mental HealthNematodaNeurodegenerative DisordersNeurodevelopmental DisorderNeurosciencesNeurotransmittersPathologicPharmacologic SubstancePhasePopulation AnalysisPreparationPsyche structureRattusResearchResearch DesignResearch PersonnelRodentSchizophreniaSchoolsSerotoninSpeedStrategic PlanningSystemTechnologyTestingTimeToxicologyTraumatic Brain InjuryValidationVisual FieldsWorkanalytical methodautism spectrum disorderbasebehavioral studyconvolutional neural networkdesigndigitaldrug discoveryfightingfree behaviorgamma-Aminobutyric Acidhigh throughput screeninginnovationintelligent algorithmlongitudinal analysisneural network architectureneurodevelopmentneuropsychiatric disorderneurotransmitter releasenext generationnovelnovel therapeuticspreventprototypereceptorsocialusability
项目摘要
Abstract
This project aims to develop WormInvestigator™, a novel, highly innovative system for performing automated,
high-throughput and longitudinal studies of the behavior of C. elegans worms freely moving and socially
interacting on agar plates (hereafter: "freely moving worms") across multiple time points over extended times
(e.g., multiple days) with repeated measures designs. Work in Phase I will focus on demonstrating feasibility of
our novel, patent pending, WormRecognizer™ technology – the ability to perform automatic, image-based
identification of individual C. elegans worms within a group of freely moving worms ("digital tagging of freely
moving worms"). Work in Phase II will focus on creating the full functionality of WormInvestigator for the
commercial release. The innovation inherent in WormRecognizer will serve as the basis for enabling a game-
changing innovation in the field – the ability to perform high throughput longitudinal, repeated measures design
analyses of locomotion and other behavior of freely moving C. elegans worms from discrete, non-continuous
video sequences. Compared to study designs that have independent groups repeated measures designs offer
more statistical power and the possibility to track an effect over time. Specifically, repeated measures designs
for analyzing locomotion and other behavior of freely moving worms will allow researchers to definitively assess
the likelihood that a particular behavior is associated with a prior behavior, which is impossible without repeated
measures designs or impractical continuous imaging and tracking under constant illumination. WormRecognizer
will leverage the Deep Convolutional Neural Network (CNN) architecture to perform automatic identification of
the tracks of the same worm in videos of groups of freely moving worms recorded at different time points;
encouraging pilot data were generated during preparation of this application. C. elegans is increasingly used as
a model organism in research focusing on brain mechanisms underlying complex behaviors and pathological
alterations thereof, including research into neurodevelopment, Alzheimer's disease, autism, schizophrenia and
traumatic brain injury. Thus, WormInvestigator will enable significant advancements in various mental
neuroscience applications that use C. elegans as a model organism. Specifically, the fact that C. elegans express
many of the neurotransmitters and associated receptors that are found in higher eukaryotes, including humans,
makes C. elegans highly attractive for the (high throughput) screening of next generation therapeutics for mental
diseases such as Alzheimer's disease, as well as for disorders that rely on neurotransmitter release modulation
such as next generation treatments for schizophrenia. We will perform extensive feasibility studies, product
validation and usability studies of WormInvestigator in close collaboration with expert neuroscientists. Market
research performed during preparation of this application indicated that WormInvestigator will expand the use of
C. elegans as a model organism to many laboratories that do not currently use them. A competing technology is
not available. We anticipate the global market size for WormInvestigator to be more than 300 systems.
抽象的
该项目旨在开发 WormInvestigator™,这是一种新颖的、高度创新的系统,用于执行自动化、
对线虫自由移动和社交行为的高通量纵向研究
在琼脂平板上(以下简称“自由移动的蠕虫”)在多个时间点上长时间相互作用
(例如,多天)重复措施设计第一阶段的工作将侧重于证明以下措施的可行性。
我们新颖的、正在申请专利的 WormRecognizer™ 技术 – 能够自动执行基于图像的操作
识别一组自由移动的蠕虫中的个体秀丽隐杆线虫(“自由移动的数字标记”)
移动蠕虫”)。第二阶段的工作将侧重于为蠕虫创建完整的功能
WormRecognizer 固有的创新将作为实现游戏的基础。
改变该领域的创新——执行高通量纵向、重复测量设计的能力
从离散、非连续的角度分析自由移动的线虫的运动和其他行为
与具有独立组的重复测量设计提供的研究设计相比。
更强大的统计能力以及随着时间的推移跟踪效果的可能性,特别是重复测量设计。
用于分析自由移动蠕虫的运动和其他行为将使研究人员能够明确评估
特定行为与先前行为相关的可能性,如果不重复,这是不可能的
蠕虫识别器
将利用深度卷积神经网络(CNN)架构来执行自动识别
不同时间点记录的自由蠕虫群视频中同一蠕虫的运动轨迹;
在准备该应用程序期间产生了令人鼓舞的试点数据。秀丽隐杆线虫越来越多地被用作。
研究中的模型生物,重点研究复杂行为和病理背后的大脑机制
其改变,包括对神经发育、阿尔茨海默病、自闭症、精神分裂症和
因此,WormInvestigator 将在各种心理方面取得重大进展。
使用线虫作为模型生物的神经科学应用具体来说,线虫表达的事实。
在包括人类在内的高等真核生物中发现的许多神经递质和相关受体,
使得线虫对于下一代精神疗法的(高通量)筛选极具吸引力
阿尔茨海默病等疾病,以及依赖神经递质释放调节的疾病
例如精神分裂症的下一代治疗方法,我们将进行广泛的可行性研究、产品。
与市场专家神经科学家密切合作对 WormInvestigator 进行验证和可用性研究。
在准备本应用程序期间进行的研究表明,WormInvestigator 将扩大使用
线虫作为许多实验室的模式生物,但目前尚未使用线虫。
我们预计 WormInvestigator 的全球市场规模将超过 300 个系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10755027 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Understanding how variations in nuclear size after whole genome doubling affect tumorigenesis
了解全基因组加倍后核大小的变化如何影响肿瘤发生
- 批准号:
10607178 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
GM-CSF, macrophages, and susceptibility to Mycobacterium abscessus pulmonary infection
GM-CSF、巨噬细胞和脓肿分枝杆菌肺部感染的易感性
- 批准号:
10637279 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Effect of Mucins and Dolosigranlulum pigrum on Staphylococcus aureus nasal colonization
粘蛋白和猪白粉对金黄色葡萄球菌鼻定植的影响
- 批准号:
10678143 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别: