Molecular mechanisms of cell fate determinant assembly
细胞命运决定簇组装的分子机制
基本信息
- 批准号:10626885
- 负责人:
- 金额:$ 48.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAffinityAnimalsBindingBiochemicalBioinformaticsBiological AssayBiological ProcessCellsCytoplasmDataDefectDevelopmentDevelopmental BiologyDimerizationDrosophila genusEmbryoEmbryonic DevelopmentEnsureFailureGelGenesGeneticGermGerm CellsGerm LinesGerm cell tumorGoalsGrowthHealthHumanIn VitroIndividualInfertilityInheritedLightLipid BindingLipidsLiposomesMalignant neoplasm of ovaryMediatingMembraneMessenger RNAMitochondriaModificationMolecularMolecular BiologyMutagenesisMutationN-terminalOocytesOogenesisOrganellesOrganismPathologyPhasePopulationPropertyProtein IsoformsProteinsRNARecording of previous eventsReproductionReproductive systemRibonucleoproteinsRoleSeriesSiteSomatic CellSpecific qualifier valueStructureTeratomaTestingTimeTransgenic OrganismsTranslationsVariantX-Ray Crystallographybiophysical propertiescell fate specificationcell typeeggexperimental studygonadal cancerhuman diseasein vivoinnovationnovelnovel strategiesprotein aggregationprotein protein interactionrecruitreproductivereproductive system disordersperm cellstoichiometry
项目摘要
PROJECT SUMMARY
During embryonic development cells must be correctly allocated to distinct fates needed for organismal
growth and reproduction. Germ cells generate eggs and sperm and must be specified to avoid disorders of
the reproductive system, including gonadal and ovarian cancers, teratomas and other germ cell tumors, and
ultimately infertility. Germ cells often acquire their fate by inheriting cytoplasmic components that are
maternally synthesized, membrane-free, gel-like aggregates of proteins and RNAs collectively called germ
plasm. The highly conserved proteins, RNAs and organelles within germ plasm are assembled, or
nucleated, by other proteins that can be different in sequence across animals, but that share similar
evolutionary histories and biophysical properties. The molecular mechanisms by which these nucleators
ensure assembly and function of germ plasm remain unclear. Our long-term goal is to understand the
molecular mechanisms that drive the assembly and function of cytoplasmic fate determinants. In this
proposal, we will elucidate the mechanisms by which the Drosophila nucleator, encoded by the oskar gene,
assembles germ plasm. This proposal is significant because it has the potential to uncover generalizable
principles of germ plasm assembly, which may be broadly applicable to the formation and function of
membrane-less, gel-like cytoplasmic aggregates that regulate cell fates in many different contexts. Our
bioinformatic discovery of hundreds of new oskar sequences, combined with X-ray crystallography and
biochemical assays, suggested previously unexplored hypotheses for the molecular mechanism of oskar
function, which we will test as follows: In Aim 1, we will elucidate the role of the conserved LOTUS domain
in germ plasm assembly with in vitro biochemical assays and in vivo transgenic assays of the biological
function and biophysical properties of germ plasm, testing hypotheses regarding the importance of
dimerization, higher-order aggregate formation, phase separation, and Vasa binding to germ plasm
assembly. In Aim 2, we will determine for the first time the specific sequences and structural properties of
the Long Oskar Domain that enable the Long Oskar isoform to recruit and anchor mitochondria in the germ
plasm. In Aim 3, we will test the novel hypothesis that the conserved OSK domain interacts with specific
classes of lipids in the oocyte posterior, to help anchor Oskar to the posterior pole. Since defects in germ
cell development can lead to reproductive system pathologies affecting up to 12% of the US population,
elucidating the mechanisms that ensure assembly and function of germ line determinants is highly relevant
to human health. More generally, germ plasm is a type of ribonucleoprotein multimer (RNP), which are
membrane-free, gel-like organelles that regulate translation in both germ line and somatic cells.
Understanding germ plasm assembly may thus shed light on the general principles underlying assembly of
cytoplasmic RNPs required for the proper function of multiple critical cell types.
项目概要
在胚胎发育过程中,细胞必须正确分配到有机体所需的不同命运
生长和繁殖。生殖细胞产生卵子和精子,必须对其进行指定以避免疾病
生殖系统,包括性腺癌和卵巢癌、畸胎瘤和其他生殖细胞肿瘤,以及
最终导致不孕。生殖细胞通常通过继承细胞质成分来获得其命运
母体合成的、无膜的、凝胶状的蛋白质和 RNA 聚集体统称为胚芽
血浆。种质内高度保守的蛋白质、RNA和细胞器被组装,或者
由其他蛋白质成核,这些蛋白质在动物之间的序列可能不同,但具有相似的
进化历史和生物物理特性。这些成核剂的分子机制
确保种质的组装和功能仍不清楚。我们的长期目标是了解
驱动细胞质命运决定因素的组装和功能的分子机制。在这个
提案中,我们将阐明由 oskar 基因编码的果蝇成核剂的机制,
组装种质。这个提议很重要,因为它有可能发现可推广的
种质组装原理,可广泛应用于
无膜、凝胶状细胞质聚集体,可在许多不同的情况下调节细胞命运。我们的
数百个新的奥斯卡序列的生物信息发现,结合X射线晶体学和
生化检测,提出了先前未探索的关于 oskar 分子机制的假设
功能,我们将测试如下:在目标 1 中,我们将阐明保守的 LOTUS 结构域的作用
通过体外生化测定和生物体内转基因测定进行种质组装
种质的功能和生物物理特性,检验关于种质重要性的假设
二聚化、高阶聚集体形成、相分离以及 Vasa 与种质的结合
集会。在目标2中,我们将首次确定其具体序列和结构特性
长奥斯卡结构域,使长奥斯卡亚型能够招募并锚定胚芽中的线粒体
血浆。在目标 3 中,我们将测试保守的 OSK 结构域与特定的相互作用的新假设。
卵母细胞后部的脂质类别,有助于将奥斯卡锚定在后极。由于胚芽缺陷
细胞发育可能导致生殖系统病变,影响多达 12% 的美国人口,
阐明确保种系决定因素的组装和功能的机制具有高度相关性
为了人类的健康。更一般地说,种质是一种核糖核蛋白多聚体(RNP),它们是
调节生殖细胞和体细胞翻译的无膜凝胶状细胞器。
因此,了解种质组装可能有助于揭示种质组装的一般原理。
多种关键细胞类型正常发挥功能所需的细胞质 RNP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cassandra G Extavour其他文献
Cassandra G Extavour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cassandra G Extavour', 18)}}的其他基金
Molecular mechanisms of cell fate determinant assembly
细胞命运决定簇组装的分子机制
- 批准号:
10446358 - 财政年份:2022
- 资助金额:
$ 48.61万 - 项目类别:
Genetic regulation of ovariole development in Drosophila
果蝇卵巢发育的遗传调控
- 批准号:
9067823 - 财政年份:2013
- 资助金额:
$ 48.61万 - 项目类别:
Genetic regulation of ovariole development in Drosophila
果蝇卵巢发育的遗传调控
- 批准号:
8731144 - 财政年份:2013
- 资助金额:
$ 48.61万 - 项目类别:
Genetic regulation of ovariole development in Drosophila
果蝇卵巢发育的遗传调控
- 批准号:
8504138 - 财政年份:2013
- 资助金额:
$ 48.61万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 48.61万 - 项目类别:
Regulation of eDHFR-tagged proteins with trimethoprim PROTACs
使用甲氧苄啶 PROTAC 调节 eDHFR 标记蛋白
- 批准号:
10714294 - 财政年份:2023
- 资助金额:
$ 48.61万 - 项目类别:
Targeting glycoprotein (G) domain-III for pan-lyssavirus nanobody therapeutics
靶向糖蛋白 (G) 结构域 III 用于泛狂犬病病毒纳米抗体治疗
- 批准号:
10667756 - 财政年份:2023
- 资助金额:
$ 48.61万 - 项目类别:
Decoding Structural Determinants of Efficacy and Specificity in a GPCR Subfamily
解码 GPCR 亚家族中功效和特异性的结构决定因素
- 批准号:
10572310 - 财政年份:2023
- 资助金额:
$ 48.61万 - 项目类别:
A NOVEL PROCESS SAFEGUARDS GENOME INTEGRITY IN THE MAMMALIAN GERM LINE
保护哺乳动物生殖系基因组完整性的新工艺
- 批准号:
10445720 - 财政年份:2022
- 资助金额:
$ 48.61万 - 项目类别: