Fluorescence Fluctuation Spectroscopy with Light Sheet Microscopy
荧光涨落光谱与光片显微镜
基本信息
- 批准号:10242938
- 负责人:
- 金额:$ 19.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnimal ModelAnisotropyBehaviorBiological AssayCaenorhabditis elegansCell Culture TechniquesCell Surface ReceptorsCellsCharacteristicsClinical TrialsComplexConsumptionDataDetectionDevelopmentDoseDrosophila genusEffectivenessEmbryoEnvironmentFluorescenceGene ExpressionGlassGoalsHourHumanImageImmunotherapeutic agentImmunotherapyLaser Scanning MicroscopyLightLightingMalignant NeoplasmsMapsMeasuresMembraneMethodsMicroscopyModelingMolecularMotionMovementNatural Killer CellsOpticsPharmaceutical PreparationsPhotobleachingPhysiologicalPositioning AttributeProcessProteinsReceptor CellResearch PersonnelResolutionSamplingScanningSignal TransductionSpecimenSpectrum AnalysisSpeedStimulusStructureSurfaceTechnologyTestingTimeTissuesVisualizationWorkZebrafishadaptive opticsbasecancer cellcell motilitycellular imagingdrug candidatedrug developmentdrug discoveryfluorescence imagingfluorophoregrasphigh rewardhigh riskinnovationintercellular communicationinterestlight curvelight scatteringmechanotransductionmillisecondmonolayerneglectnew therapeutic targetnovelnovel strategiesparticleprematurereceptorresponsespatiotemporalthree dimensional cell culturetissue/cell culturetwo-dimensional
项目摘要
PROJECT SUMMARY
Three-dimensional (3D) cell culture models have been demonstrated to behave more similar to animal models
than flat cell monolayers. The high physiological relevance of those human-on-a-chip type assays is key to
accelerate drug development. To efficiently image 3D specimen, slow single point laser scanning microscopy
is being replaced by camera-based light sheet microscopy for its superior imaging speed and reduced light
exposure. While light sheet microscopy has been successfully applied to image dynamic processes on larger
scales such as cell migration in Drosophila, zebrafish, and C. elegans embryos, resolving dynamics on the
molecular level has been mostly neglected. However, measuring biomolecular dynamics is very important to
understand cell signaling, cellular responses, spatial organization of cell surface receptors, and, especially,
how cells engage in interactions with surrounding cells – mechanisms that can be targets of new drugs
including immunotherapeutics. Hence, we propose to develop novel approaches to quantify molecule/particle
movement in three-dimensional cell culture models and tissues with light sheet imaging. This high risk/high
reward proposal will tailor light sheet imaging to study cellular interfaces with high spatiotemporal resolution
and leverage two-dimensional pair correlation analysis to map the paths of biomolecules taken at those
interfaces.
In aim 1, we will use fast beam scanning, steering, and refocusing to generate tipped/tilted and curved light
sheets tailored to cellular interfaces. Imaging of one or a few complex planes using micromirror-based adaptive
optics in the detection path will allow us to record data at a much higher rate than possible with conventional z
stacks comprised of many planes. Overall feasibility is indicated by previous use of beam scanning, steering
and refocusing to track single particles on the millisecond timescale with the orbital tracking approach.
In aim 2, we will study the spatial organization of molecule dynamics in the presence of barriers or obstacles at
cellular interfaces. To reveal those barriers with single pixel resolution, we recently suggested the two-
dimensional pair correlation function (2D-pCF) approach but, so far, a successful application of this method to
3D cell culture models is lacking. Hence, we intend to prove the effectiveness of this new strategy with light
sheet microscopy in the more challenging case of cell-cell contacts/interactions. In many biomedical studies
involving cell-cell contacts, membrane receptors are the focus of interest. Therefore, we will utilize a model of
natural killer cells interacting with target cancer cells to develop our approach.
Our goal is to enable researchers to efficiently study cellular interactions in 3D specimen on the molecular
level, which are especially important for the development of innovative immunotherapy approaches, for
example, to treat cancers.
项目摘要
已经证明三维(3D)细胞培养模型的行为与动物模型更相似
比平池单层。这些人类芯片类型测定的高度相关性是至关重要的
加速药物开发。为了有效图像3D样品,慢单点激光扫描显微镜
正在用基于摄像机的光片显微镜取代其出色的成像速度和降低的光
接触。虽然光片显微镜已成功应用于较大的图像动态过程
诸如果蝇,斑马鱼和秀丽隐杆线虫胚胎中的细胞迁移之类的鳞片,解决动力学
分子水平大多被忽略了。但是,测量生物分子动力学对于
了解细胞信号,细胞反应,细胞表面受体的空间组织,尤其是
细胞如何与周围细胞的相互作用 - 可以成为新药靶标的机制
包括免疫治疗药。因此,我们建议开发新的方法来量化分子/粒子
带有光片成像的三维细胞培养模型和组织运动。这个高风险/高
奖励提案将量身定制光片成像以研究具有高空间时间分辨率的蜂窝界面
并利用二维对相关分析来绘制在那些生物分子的路径
接口。
在AIM 1中,我们将使用快速光束扫描,转向和重新聚焦以产生倾斜/倾斜的光线
量身定制的床单。使用基于微龙的自适应的一个或几个复杂平面的成像
检测路径中的光学功能将使我们能够以频率z的速度录制数据速度要高得多
堆栈完成了许多飞机。总体可行性是通过先前使用光束扫描,转向的指示
并通过轨道跟踪方法重新聚焦以在毫秒时间尺度上跟踪单个粒子。
在AIM 2中,我们将在存在障碍物或障碍的情况下研究分子动力学的空间组织
细胞界面。为了揭示单个像素分辨率的障碍,我们最近建议
维二对相关函数(2D-PCF)方法,但到目前为止,该方法成功地应用了
缺乏3D细胞培养模型。因此,我们打算用光证明这种新策略的有效性
在细胞细胞接触/相互作用的挑战案例中,薄板显微镜。在许多生物医学研究中
涉及细胞 - 细胞接触,膜受体是感兴趣的重点。因此,我们将利用一个模型
天然杀伤细胞与目标癌细胞相互作用以发展我们的方法。
我们的目标是使研究人员能够有效研究分子上3D标本中的细胞相互作用
水平,这对于开发创新免疫疗法方法尤其重要,因为
例如,治疗癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ENRICO GRATTON其他文献
ENRICO GRATTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ENRICO GRATTON', 18)}}的其他基金
Spatial proteomics using highly parallel fluorescence hyperspectral and lifetime imaging
使用高度并行荧光高光谱和寿命成像的空间蛋白质组学
- 批准号:
10503477 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Spatial proteomics using highly parallel fluorescence hyperspectral and lifetime imaging
使用高度并行荧光高光谱和寿命成像的空间蛋白质组学
- 批准号:
10707993 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
FLUORESCENCE LIFETIME IMAGING MICROSCOPY OF BIOSENSORS
生物传感器的荧光寿命成像显微镜
- 批准号:
8365768 - 财政年份:2011
- 资助金额:
$ 19.63万 - 项目类别:
IMAGING BARRIERS TO MOLECULAR DIFFUSION BY PAIR CORRELATION FUNCTIONS
通过成对相关函数对分子扩散的障碍进行成像
- 批准号:
8365762 - 财政年份:2011
- 资助金额:
$ 19.63万 - 项目类别:
SPECTRAL-SPATIAL HETEROGENEITY FOR BREAST TUMOR CHARACTERIZATION
乳腺肿瘤特征的光谱空间异质性
- 批准号:
8362728 - 财政年份:2011
- 资助金额:
$ 19.63万 - 项目类别:
METABOLIC ANALYSIS OF STEM CELLS USING FLIM
使用 FLIM 进行干细胞代谢分析
- 批准号:
8365752 - 财政年份:2011
- 资助金额:
$ 19.63万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别: