Spatial proteomics using highly parallel fluorescence hyperspectral and lifetime imaging
使用高度并行荧光高光谱和寿命成像的空间蛋白质组学
基本信息
- 批准号:10503477
- 负责人:
- 金额:$ 55.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlzheimer&aposs DiseaseArchitectureBase SequenceBasic ScienceBenchmarkingBiologicalBiological AssayBiological ProcessBiologyBiopsyCell physiologyCellsClinicalColorCommunitiesComplementary DNAComplexConsumptionCytometryDNA Microarray ChipDNA ProbesDataDetectionDevelopmentDiseaseEquipmentExhibitsFluorescenceHomeostasisImageImmunofluorescence ImmunologicImmunohistochemistryImmunooncologyIn SituLabelLasersMass Spectrum AnalysisMeasurementMediatingMethodsModalityNatureOligonucleotidesPathologicPatient CarePatientsPerformancePhasePhenotypePhysiologic pulsePositioning AttributeProcessProtein AnalysisProteinsProteomeProteomicsPublishingRegulationReproducibilityResearchResolutionSamplingSensitivity and SpecificityShapesStainsSystemTechnologyThickThinnessTimeTissue ModelTissuesTumor TissueValidationVisualizationVisualization softwareWorkantibody conjugatebasebrain tissueclinical applicationclinically relevantcomputerized data processingcostcost effectivedata visualizationfluorescence imagingfluorescence lifetime imagingfluorophoreindexinginstrumentneuroinflammationnew technologynoveloptical spectraorgan growthpatient stratificationpersonalized diagnosticspersonalized medicineprotein biomarkersprotein expressionprotein profilingprototypescale upsingle cell sequencingspatiotemporaltechnological innovationtissue processingtooltumortwo-photon
项目摘要
Abstract
Multiplexed spatial profiling of protein markers in cells and tissues is critical to basic research and clinical
applications. Unfortunately, we currently lack tools that can rapidly and routinely profile a large number of proteins
in situ in large tissues with subcellular resolution in a time and cost-effective fashion. Existing tools for in situ
protein analysis including immunohistochemistry and immunofluorescence suffer from low multiplexing because
of limited separation of spectral channels. Recent single-cell sequencing methods lack the critical spatial context
needed to understand complex heterogeneous samples. Other spatial proteomics methods that are based on
serial labeling and imaging, indirect indexed mass spectrometry or sequencing are complicated, time-consuming
and expensive. This proposed project will develop a new spatial proteomics technology termed as Phasor S-
FLIM that enables direct, simultaneous, high-plex spatial profiling of protein markers in large and thick tissues
with just one-round of staining and imaging. Our Phasor S-FLIM system, for the first time, allows true parallel,
simultaneous lifetime and spectral detection with phasor analysis to obtain fast, unbiased, high-precision lifetime
and spectral data that can be processed in real time. In the proposed work, we will adapt and further develop
Phasor S-FLIM for high-plex spatial proteomics applications, including (a) implementation of Pulsed Interleaved
Excitation (PIE) dual excitation with 2-photon lasers and sensitive multi-channel GaAsP PMT arrays, enabling
exciting and detecting a broad range of fluorophores (Aim 1), (b) development of a novel fluorophore-quencher
labeling strategy to generate a large repertoire of probes with orthogonal lifetime and spectrum signatures for
high-plex target encoding (Aim 2), and (c) characterization, validation and benchmarking of Phasor S-FLIM for
multiplexed spatial protein analysis using broadly relevant biological and clinical tissue models (Aim 3). Once
developed, we expect the Phasor S-FLIM can detect at least 30 different protein targets through direct, one
round of staining and imaging, in thick (>0.5 mm) tissues, with subcellular resolution (200 nm), and in high
imaging throughput (1 x 1 mm2 plane in <15 min), which is currently not possible with existing methods. Upon
successful completion of the proposed work, we will have established a working prototype ready to quickly serve
the scientific community to address a broad range of biological and clinical questions that are previously
impossible or impractical. Our technology can potentially shift current practice in interrogating protein and cellular
processes as well as the complexity and systems in biology and disease with high resolution, throughput and
scale.
抽象的
细胞和组织中蛋白质标记物的多重空间分析对于基础研究和临床至关重要
应用程序。不幸的是,我们目前缺乏能够快速、常规地分析大量蛋白质的工具
以时间和成本效益的方式在大组织中进行亚细胞分辨率的原位分析。现有的现场工具
蛋白质分析(包括免疫组织化学和免疫荧光)的多重性较低,因为
光谱通道的有限分离。最近的单细胞测序方法缺乏关键的空间背景
需要了解复杂的异质样本。其他基于空间蛋白质组学的方法
连续标记和成像、间接索引质谱或测序复杂且耗时
而且很贵。该拟议项目将开发一种新的空间蛋白质组学技术,称为 Phasor S-
FLIM 可对大而厚的组织中的蛋白质标记物进行直接、同步、高复杂度的空间分析
只需一轮染色和成像。我们的 Phasor S-FLIM 系统首次实现了真正的并行、
通过相量分析同时进行寿命和光谱检测,以获得快速、无偏差、高精度的寿命
以及可以实时处理的光谱数据。在拟议的工作中,我们将适应并进一步发展
Phasor S-FLIM 适用于高复杂空间蛋白质组学应用,包括 (a) 脉冲交错的实施
使用 2 光子激光器和灵敏的多通道 GaAsP PMT 阵列进行激发 (PIE) 双激发,使
激发并检测多种荧光团(目标 1),(b) 开发新型荧光团猝灭剂
标记策略,生成大量具有正交寿命和光谱特征的探针
高复数目标编码(目标 2),以及 (c) Phasor S-FLIM 的表征、验证和基准测试
使用广泛相关的生物和临床组织模型进行多重空间蛋白质分析(目标 3)。一次
开发完成后,我们预计 Phasor S-FLIM 可以通过直接检测至少 30 种不同的蛋白质靶标,一种
在厚(>0.5 mm)组织中进行一轮染色和成像,具有亚细胞分辨率(200 nm),并且在高
成像吞吐量(1 x 1 mm2 平面<15 分钟),这是目前现有方法无法实现的。之上
成功完成建议的工作后,我们将建立一个工作原型,准备快速服务
科学界解决以前广泛的生物学和临床问题
不可能或不切实际的。我们的技术有可能改变当前研究蛋白质和细胞的实践
具有高分辨率、通量和精度的生物学和疾病过程以及复杂性和系统
规模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ENRICO GRATTON其他文献
ENRICO GRATTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ENRICO GRATTON', 18)}}的其他基金
Spatial proteomics using highly parallel fluorescence hyperspectral and lifetime imaging
使用高度并行荧光高光谱和寿命成像的空间蛋白质组学
- 批准号:
10707993 - 财政年份:2022
- 资助金额:
$ 55.59万 - 项目类别:
Fluorescence Fluctuation Spectroscopy with Light Sheet Microscopy
荧光涨落光谱与光片显微镜
- 批准号:
10242938 - 财政年份:2020
- 资助金额:
$ 55.59万 - 项目类别:
FLUORESCENCE LIFETIME IMAGING MICROSCOPY OF BIOSENSORS
生物传感器的荧光寿命成像显微镜
- 批准号:
8365768 - 财政年份:2011
- 资助金额:
$ 55.59万 - 项目类别:
IMAGING BARRIERS TO MOLECULAR DIFFUSION BY PAIR CORRELATION FUNCTIONS
通过成对相关函数对分子扩散的障碍进行成像
- 批准号:
8365762 - 财政年份:2011
- 资助金额:
$ 55.59万 - 项目类别:
SPECTRAL-SPATIAL HETEROGENEITY FOR BREAST TUMOR CHARACTERIZATION
乳腺肿瘤特征的光谱空间异质性
- 批准号:
8362728 - 财政年份:2011
- 资助金额:
$ 55.59万 - 项目类别:
METABOLIC ANALYSIS OF STEM CELLS USING FLIM
使用 FLIM 进行干细胞代谢分析
- 批准号:
8365752 - 财政年份:2011
- 资助金额:
$ 55.59万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 55.59万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 55.59万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 55.59万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 55.59万 - 项目类别: