Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches

通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现

基本信息

  • 批准号:
    10613499
  • 负责人:
  • 金额:
    $ 54.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Identification of high-quality chemical probes, molecules with high specificity and selectivity against macromolecules, is of critical interest to drug discovery. Although millions of compounds have been screened against thousands of protein targets, small-molecule probes are currently available for only 4% of the human proteome. Thus, more efficient approaches are required to accelerate the development of novel, target-specific probes. In 2019, a new bold initiative called “Target 2035” was launched with the goal of “creating […] chemical probes, and/or functional antibodies for the entire proteome” by 2035. In support of this ambitious initiative, we propose to develop and test a novel integrative AI-driven methodology for rapid chemical probe discovery against any target protein. Here, we will build an integrative workflow where the unique XChem database of experimental crystallographic information describing the pose and nature of chemical fragments binding to the target protein will be used in several innovative computational approaches to predict the structure of organic molecules with high affinity towards specific targets. The candidate molecules will be experimentally validated and then optimized, using computational algorithms, into lead molecules to seed chemical probe development. The proposed project is structured around three following interrelated keystones: (i) Develop a novel method for ligand-binding hot-spot identification and discovery of novel chemical probe candidates; (ii) Develop novel fragment-based integrative computational approach for accelerated de novo design of chemical probes; (iii) Consensus prediction of target-specific ligands, synthesis, and experimental validation of computational hits. More specifically, we will develop a hybrid method to predict structures of high-affinity ligands for proteins for which XChem fragment screens have been completed. These approaches will be used for screening of ultra- large (>10 billion) chemical libraries to identify putative high affinity ligands within crystallographically determined pockets. Then, we will develop and employ an approach using graph convolutional neural networks for de novo design of a library of strong binders that will be evaluated to select the best candidates for chemical optimization. Finally, we will combine traditional structure-based and novel approaches, developed in this project to select consensus hit compounds against three target proteins: transcription factor brachyury, hydrolase NUDT5, and bromodomain BAZ2B. Iterative design guided by the computational algorithms, synthesis, and testing will progressively optimize molecules to micromolar leads to chemical probes for the target proteins. Completion of the proposed aims will deliver a robust integrative workflow to identify leads for chemical probes against diverse target proteins. We expect that our AI-based computational approach to convert crystallographically-determined chemical fragments into lead compounds coupled with the experimental validation of computational algorithms will accelerate the discovery of new chemical probes, expand the druggable proteome, and support future drug discovery studies
抽象的 鉴定高质量的化学问题,具有高特异性和选择性的分子 大分子是药物发现的关键意义。尽管已经筛选了数百万种化合物 针对数千种蛋白质靶标,目前只有4%的人类出现小分子问题 蛋白质组。这是需要更有效的方法来加速新颖的,特定目标的发展 问题。 2019年,启动了一项名为“ Target 2035”的新大胆倡议,目的是“创建[…]化学物质 到2035年,问题和/或功能性抗体”到2035年。为了支持这一雄心勃勃的倡议,我们 开发和测试一种新型的集成AI驱动方法,以快速化学探针发现反对 任何靶蛋白。在这里,我们将构建一个集成的工作流程,其中独特的实验Xchem数据库 描述与靶蛋白结合的化学片段的姿势和性质的晶体学信息 将用于几种创新的计算方法,以预测有机分子的结构 对特定目标的高亲和力。候选分子将经过实验验证,然后 使用计算算法优化成铅分子以播种化学探针的发展。这 拟议的项目是在以下相互关联的钥匙石的三个左右结构的:(i)开发一种新颖的方法 配体结合的热点鉴定和新型化学探针候选物的发现; (ii)发展小说 基于碎片的集成计算方法,用于加速化学问题的新设计; (iii) 目标特异性配体,合成和实验验证的共识预测。 更具体地说,我们将开发一种混合方法来预测蛋白质高亲和力配体的结构 哪些Xchem片段屏幕已完成。这些方法将用于筛选超级 大型(> 100亿)化学库,以识别晶体学确定的假定高亲和力配体 口袋。然后,我们将使用图形卷积神经网络开发和采用一种方法 将评估的强粘合剂库的设计,以选择用于化学优化的最佳候选物。 最后,我们将结合基于结构的传统方法和新颖的方法,在该项目中开发以选择 共识击中三种靶蛋白的化合物:转录因子Brachyury,水解酶NUDT5和 Bromodomain BAZ2B。以计算算法,合成和测试为指导的迭代设计将 逐渐优化分子到微摩尔会导致靶蛋白的化学问题。 拟议的目标的完成将提供强大的集成工作流程,以识别化学的潜在客户 针对潜水员靶蛋白的问题。我们希望我们基于AI的计算方法转换 晶体学确定的化学片段成铅化合物与实验 计算算法的验证将加速发现新的化学问题,扩展 可药物蛋白质组,并支持未来的药物发现研究

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Utilizing Low-Dimensional Molecular Embeddings for Rapid Chemical Similarity Search.
利用低维分子嵌入进行快速化学相似性搜索。
Conserved coronavirus proteins as targets of broad-spectrum antivirals.
  • DOI:
    10.1016/j.antiviral.2022.105360
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
  • 通讯作者:
Lies and Liabilities: Computational Assessment of High-Throughput Screening Hits to Identify Artifact Compounds.
谎言和责任:高通量筛选命中的计算评估以识别人工化合物。
  • DOI:
    10.1021/acs.jmedchem.3c00482
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Alves,ViniciusM;Yasgar,Adam;Wellnitz,James;Rai,Ganesha;Rath,Marielle;Braga,RodolphoC;Capuzzi,StephenJ;Simeonov,Anton;Muratov,EugeneN;Zakharov,AlexeyV;Tropsha,Alexander
  • 通讯作者:
    Tropsha,Alexander
An Improved Metric and Benchmark for Assessing the Performance of Virtual Screening Models.
用于评估虚拟筛选模型性能的改进指标和基准。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brocidiacono,Michael;Popov,KonstantinI;Tropsha,Alexander
  • 通讯作者:
    Tropsha,Alexander
PLANTAIN: Diffusion-inspired Pose Score Minimization for Fast and Accurate Molecular Docking.
车前草:受扩散启发的姿势评分最小化,用于快速准确的分子对接。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brocidiacono,Michael;Popov,KonstantinI;Koes,DavidRyan;Tropsha,Alexander
  • 通讯作者:
    Tropsha,Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Tropsha其他文献

Alexander Tropsha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Tropsha', 18)}}的其他基金

STopTox: A comprehensive in silico platform for predicting systemic and topical toxicity
StopTox:用于预测全身和局部毒性的综合计算机平台
  • 批准号:
    10324720
  • 财政年份:
    2021
  • 资助金额:
    $ 54.9万
  • 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
  • 批准号:
    10398798
  • 财政年份:
    2021
  • 资助金额:
    $ 54.9万
  • 项目类别:
Artificial Intelligence Toolkit for Predicting Mixture Toxicity
用于预测混合物毒性的人工智能工具包
  • 批准号:
    10379210
  • 财政年份:
    2021
  • 资助金额:
    $ 54.9万
  • 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
  • 批准号:
    10706749
  • 财政年份:
    2020
  • 资助金额:
    $ 54.9万
  • 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
  • 批准号:
    10057067
  • 财政年份:
    2020
  • 资助金额:
    $ 54.9万
  • 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
  • 批准号:
    10543636
  • 财政年份:
    2020
  • 资助金额:
    $ 54.9万
  • 项目类别:
Drug Repurposing for Cancer Therapy: From Man to Molecules to Man
癌症治疗的药物再利用:从人到分子再到人
  • 批准号:
    9337383
  • 财政年份:
    2016
  • 资助金额:
    $ 54.9万
  • 项目类别:
PREDICTIVE QSAR MODELING
预测 QSAR 建模
  • 批准号:
    7818406
  • 财政年份:
    2009
  • 资助金额:
    $ 54.9万
  • 项目类别:
Robust computational framework for predictive ADME-Tox modeling
用于预测 ADME-Tox 建模的强大计算框架
  • 批准号:
    7433931
  • 财政年份:
    2006
  • 资助金额:
    $ 54.9万
  • 项目类别:
Protein Structure/Function Specific Packing Motifs
蛋白质结构/功能特异性包装基序
  • 批准号:
    7150789
  • 财政年份:
    2006
  • 资助金额:
    $ 54.9万
  • 项目类别:

相似国自然基金

基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
  • 批准号:
    62302456
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
  • 批准号:
    32301185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
  • 批准号:
    10587024
  • 财政年份:
    2023
  • 资助金额:
    $ 54.9万
  • 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
  • 批准号:
    10826068
  • 财政年份:
    2023
  • 资助金额:
    $ 54.9万
  • 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
  • 批准号:
    10750556
  • 财政年份:
    2023
  • 资助金额:
    $ 54.9万
  • 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 54.9万
  • 项目类别:
Tackling Multifaceted Drug Design Problems with Lambda Dynamics Based Technologies
利用基于 Lambda Dynamics 的技术解决多方面的药物设计问题
  • 批准号:
    10709879
  • 财政年份:
    2022
  • 资助金额:
    $ 54.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了