Drug Repurposing for Cancer Therapy: From Man to Molecules to Man
癌症治疗的药物再利用:从人到分子再到人
基本信息
- 批准号:9337383
- 负责人:
- 金额:$ 41.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse drug effectAnimal Cancer ModelBig DataBiologicalBiological AssayBiological ModelsCancer PatientCellsChemicalsClinical TrialsCognitiveCollectionComputer SimulationDataData SetDatabasesDiseaseDockingDrug ModelingsDrug TargetingElectronic Health RecordGenerationsGoalsHumanIn VitroInternetKnowledge DiscoveryLabelLaboratoriesLanguageLinkLiteratureMalignant Childhood NeoplasmMalignant NeoplasmsMedicalMetadataMethodsMiningModelingMolecularMolecular ModelsNamesPaperPathway interactionsPatientsPharmaceutical PreparationsPhase II Clinical TrialsPhysiciansPubChemPubMedPublicationsPublishingQuantitative Structure-Activity RelationshipReportingResearchResearch Project GrantsSemanticsSourceStreamStructureTechnologyTextTherapeutic EffectTranslationsValidationbasecancer therapycomputer based Semantic Analysiscomputer frameworkcomputer studiescomputerized toolsdrug candidategenomic datahealth recordhigh rewardhuman datain vivomannew therapeutic targetnovelnovel therapeuticspre-clinicalrepositoryscreeningsmall molecule librariessocial mediatext searchingtoolvirtual
项目摘要
Abstract
This project aims to develop and implement multiple but integrated computational tools for drug
repurposing by exploiting complimentary big data streams, i.e., unstructured texts (social media
networks, published biomedical literature, and electronic health records), electronic databases
of chemical-biological interactions and pathways, and laboratory data (biological screening of
chemical libraries). We expect that tools to be developed in this project will be useful for
repurposing observational textual data for research projects (addressing the second challenge
of the underlying RFA). In addition, the envisioned translation of this data into a format
amenable to quantitative modeling of drug effects will also enable integration of textual and
laboratory data to create minable metadata (cf. the third challenge).
抽象的
该项目旨在开发和实施用于药物的多种但集成的计算工具
通过利用免费的大数据流,即非结构化文本(社交媒体)来重新利用
网络,已发表的生物医学文献和电子健康记录),电子数据库
化学生物相互作用和途径以及实验室数据(生物学筛查的生物学筛查
化学库)。我们希望在该项目中开发工具对
重新利用研究项目的观察性文本数据(解决第二个挑战
基础RFA)。此外,将这些数据的设想翻译成格式
适合对药物效应的定量建模也将使文本和
实验室数据创建可最小的元数据(参见第三个挑战)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tropsha其他文献
Alexander Tropsha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tropsha', 18)}}的其他基金
STopTox: A comprehensive in silico platform for predicting systemic and topical toxicity
StopTox:用于预测全身和局部毒性的综合计算机平台
- 批准号:
10324720 - 财政年份:2021
- 资助金额:
$ 41.71万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
- 批准号:
10398798 - 财政年份:2021
- 资助金额:
$ 41.71万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现
- 批准号:
10613499 - 财政年份:2021
- 资助金额:
$ 41.71万 - 项目类别:
Artificial Intelligence Toolkit for Predicting Mixture Toxicity
用于预测混合物毒性的人工智能工具包
- 批准号:
10379210 - 财政年份:2021
- 资助金额:
$ 41.71万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10706749 - 财政年份:2020
- 资助金额:
$ 41.71万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10057067 - 财政年份:2020
- 资助金额:
$ 41.71万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10543636 - 财政年份:2020
- 资助金额:
$ 41.71万 - 项目类别:
Robust computational framework for predictive ADME-Tox modeling
用于预测 ADME-Tox 建模的强大计算框架
- 批准号:
7433931 - 财政年份:2006
- 资助金额:
$ 41.71万 - 项目类别:
Protein Structure/Function Specific Packing Motifs
蛋白质结构/功能特异性包装基序
- 批准号:
7150789 - 财政年份:2006
- 资助金额:
$ 41.71万 - 项目类别:
相似海外基金
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
- 批准号:
10722518 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Development of a clinically relevant mouse model of lung cancer cachexia to study pathoetiology and therapeutic strategies
开发临床相关的肺癌恶病质小鼠模型以研究病理学和治疗策略
- 批准号:
10729653 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Preclinical and IND enabling studies for treatment of advanced lung cancer and other cancers metastatic to lung by pulmonary delivery of engineered Influenza A Virus (eIAV)
通过经肺递送工程甲型流感病毒 (eIAV) 治疗晚期肺癌和其他转移至肺部的癌症的临床前和 IND 研究
- 批准号:
10822598 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
A systematic approach to uncover the basic mechanisms of checkpoint inhibitor immune related adverse events
揭示检查点抑制剂免疫相关不良事件基本机制的系统方法
- 批准号:
10637272 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别: