STopTox: A comprehensive in silico platform for predicting systemic and topical toxicity
StopTox:用于预测全身和局部毒性的综合计算机平台
基本信息
- 批准号:10324720
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-13 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnimal TestingAnimalsBayesian ModelingBiological AssayCharacteristicsChemical StructureChemicalsCollectionCommunitiesComputer ModelsComputer softwareConsensusCorrosionCosmeticsDataData ReportingData SetDermalDescriptorDevelopmentEyeFeesFundingHazard IdentificationIn VitroIndividualIngestionInhalationInstructionInteragency Coordinating Committee on the Validation of Alternative MethodsInvestigationKnowledgeLabelLaboratoriesLettersLicensingMammalsMapsMedicalMethodsModelingOralPaste substancePathway interactionsPesticidesPharmacologic SubstancePhasePrivacyProbabilityProtocols documentationPublishingQuantitative Structure-Activity RelationshipReportingResearchRunningSecureServicesSkinSmall Business Technology Transfer ResearchTechniquesTestingToxic effectValidationVisualizationWorkacute toxicityadverse outcomeanalogcomputerized toolsdeep learningdesignhazardimprovedin silicoin vivoirritationlearning strategynephrotoxicitynovelnovel strategiesphase 2 studypredictive modelingpreservationskin irritationsoftware as a servicesoftware developmenttooluser friendly softwareweb appweb portal
项目摘要
There is a strong need to develop New Alternative Methods (NAMs) to reduce animal testing of chemical,
cosmetic, and pharmaceutical products to evaluate chemical toxicity. “6-pack” battery of regulatory assays
(acute oral toxicity, acute dermal toxicity, acute inhalation toxicity, skin irritation and corrosion, eye irritation and
corrosion, and skin sensitization) is a collection of tests that chemical products must go through to achieve
regulatory approval. Computational approaches that can accurately estimate the results of the experimental
testing can provide a powerful alternative to in vivo investigations. Previously, both our group and several other
groups have developed models for some of these endpoints but using limited data or, in some cases, lacking
rigor in both curation of the reported data and model validation strategies. This project addresses these
deficiencies. We recently formed Predictive, LLC, to enable the development and distribution of commercial and
regulatory strength models to predict important toxicity endpoints. In this Phase I STTR application, we intend to
produce rigorously validated models of all “6-pack” assays, transfer these models to Predictive, LLC, and
integrate these models into a software product termed STopTox (Systemic and Topical Toxicity) Predictor. We
will achieve this objective by focusing on the following Specific Aims. Specific Aim 1. Develop advanced
models for the “6-pack” battery of tests. We will ingest new data and develop new consensus models using
multiple types of descriptors and advanced modeling techniques, including deep learning methods. We will also
generate a Bayesian model applying individual predictions of each unique model as descriptors, which could
assess if a compound would be active in any of the 6-pack tests. Specific Aim 2: Model interpretation and
elucidation of adverse outcomes pathways (AOPs.) We will enable protocols and tools for model
interpretation, which is an important part of regulatory decision support, both in terms of pf chemical features
responsible for toxicity, and respective AOPs. Predictive probability maps will be implemented as a graphical
visualization of the predicted fragment contribution, allowing the user to interpret the prediction and design safer
compounds. In a parallel effort, we will work on the issue of AOPs, which is very important for a mechanistic
understanding of toxicity mechanisms and regulatory acceptance of new chemicals. Specific Aim 3: STopTox
platform development. Predictive, LLC, will implement all models in a software that will run both locally
standalone and on a secure web portal. Testing will be done both internally and by external users. Predictions
for individual models, the smart-consensus Bayesian models, as well as predicted fragment contributions, will
be displayed on the screen and the user will be able to download a report with the results and a summary of
characteristics of the models and instructions to help interpret the results. The ultimate objective of this proposal
is to leverage public data knowledge on compounds tested in “6-pack” regulatory assays by creating a software
platform (STopTox) to be commercialized as a service or licensed to commercial users.
迫切需要开发新的替代方法(NAM)来减少化学物质的动物测试,
化妆品和药品,用于评估化学毒性的“6 组”监管检测。
(急性经口毒性、急性经皮毒性、急性吸入毒性、皮肤刺激和腐蚀、眼睛刺激和
腐蚀和皮肤过敏)是化学产品必须经过的一系列测试才能达到
能够准确估计实验结果的计算方法。
测试可以为我们的团队和其他几个团队之前的体内研究提供强大的替代方案。
一些研究小组已经为其中一些终点开发了模型,但使用的数据有限,或者在某些情况下缺乏数据
报告数据的管理和模型验证策略的严格性。
我们最近成立了 Predictive, LLC,以实现商业和分销的开发和发行。
预测重要毒性终点的监管强度模型 在第一阶段 STTR 应用中,我们打算
生成所有“6 包”检测的经过严格验证的模型,将这些模型转移到 Predictive, LLC,并且
将这些模型集成到名为 StopTox(系统和局部毒性)预测器的软件产品中。
将通过关注以下具体目标来实现这一目标: 1. 制定先进的目标。
“6 组”测试的模型我们将使用新数据并开发新的共识模型。
我们还将使用多种类型的描述符和先进的建模技术,包括深度学习方法。
生成一个贝叶斯模型,应用每个独特模型的单独预测作为描述符,这可以
评估某种化合物在任何 6 组测试中是否具有活性:具体目标 2:模型解释和
阐明不良后果途径 (AOP)。我们将为模型启用协议和工具
解释,无论是在PF化学特征方面,都是监管决策支持的重要组成部分
负责毒性,相应的 AOP 将以图形形式实现。
预测片段贡献的可视化,使用户能够更安全地解释预测和设计
在并行的工作中,我们将研究 AOP 的问题,这对于机械论来说非常重要。
了解新化学品的毒性机制和监管接受度 具体目标 3:STOPTox。
Predictive, LLC 将在本地运行的软件中实现所有模型。
测试将由内部和外部用户独立进行并在安全的门户网站上进行。
对于单个模型,智能共识贝叶斯模型以及预测的片段贡献将
显示在屏幕上,用户将能够下载包含结果和摘要的报告
模型的特征和有助于解释结果的说明 该提案的最终目标。
是通过创建一个软件来利用“6包”监管分析中测试的化合物的公共数据知识
平台(STOPTox)作为服务商业化或授权给商业用户。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STopTox: An in Silico Alternative to Animal Testing for Acute Systemic and Topical Toxicity.
- DOI:10.1289/ehp9341
- 发表时间:2022-03
- 期刊:
- 影响因子:10.4
- 作者:Borba JVB;Alves VM;Braga RC;Korn DR;Overdahl K;Silva AC;Hall SUS;Overdahl E;Kleinstreuer N;Strickland J;Allen D;Andrade CH;Muratov EN;Tropsha A
- 通讯作者:Tropsha A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tropsha其他文献
Alexander Tropsha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tropsha', 18)}}的其他基金
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
- 批准号:
10398798 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现
- 批准号:
10613499 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
Artificial Intelligence Toolkit for Predicting Mixture Toxicity
用于预测混合物毒性的人工智能工具包
- 批准号:
10379210 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10706749 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10057067 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10543636 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
Drug Repurposing for Cancer Therapy: From Man to Molecules to Man
癌症治疗的药物再利用:从人到分子再到人
- 批准号:
9337383 - 财政年份:2016
- 资助金额:
$ 25.55万 - 项目类别:
Robust computational framework for predictive ADME-Tox modeling
用于预测 ADME-Tox 建模的强大计算框架
- 批准号:
7433931 - 财政年份:2006
- 资助金额:
$ 25.55万 - 项目类别:
Protein Structure/Function Specific Packing Motifs
蛋白质结构/功能特异性包装基序
- 批准号:
7150789 - 财政年份:2006
- 资助金额:
$ 25.55万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Project 1: Translational Studies on Temperature and Solvent Effects on Electronic Cigarette-Derived Oxidants
项目1:温度和溶剂对电子烟氧化剂影响的转化研究
- 批准号:
10665896 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别: