STopTox: A comprehensive in silico platform for predicting systemic and topical toxicity
StopTox:用于预测全身和局部毒性的综合计算机平台
基本信息
- 批准号:10324720
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-13 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnimal TestingAnimalsBayesian ModelingBiological AssayCharacteristicsChemical StructureChemicalsCollectionCommunitiesComputer ModelsComputer softwareConsensusCorrosionCosmeticsDataData ReportingData SetDermalDescriptorDevelopmentEyeFeesFundingHazard IdentificationIn VitroIndividualIngestionInhalationInstructionInteragency Coordinating Committee on the Validation of Alternative MethodsInvestigationKnowledgeLabelLaboratoriesLettersLicensingMammalsMapsMedicalMethodsModelingOralPaste substancePathway interactionsPesticidesPharmacologic SubstancePhasePrivacyProbabilityProtocols documentationPublishingQuantitative Structure-Activity RelationshipReportingResearchRunningSecureServicesSkinSmall Business Technology Transfer ResearchTechniquesTestingToxic effectValidationVisualizationWorkacute toxicityadverse outcomeanalogcomputerized toolsdeep learningdesignhazardimprovedin silicoin vivoirritationlearning strategynephrotoxicitynovelnovel strategiesphase 2 studypredictive modelingpreservationskin irritationsoftware as a servicesoftware developmenttooluser friendly softwareweb appweb portal
项目摘要
There is a strong need to develop New Alternative Methods (NAMs) to reduce animal testing of chemical,
cosmetic, and pharmaceutical products to evaluate chemical toxicity. “6-pack” battery of regulatory assays
(acute oral toxicity, acute dermal toxicity, acute inhalation toxicity, skin irritation and corrosion, eye irritation and
corrosion, and skin sensitization) is a collection of tests that chemical products must go through to achieve
regulatory approval. Computational approaches that can accurately estimate the results of the experimental
testing can provide a powerful alternative to in vivo investigations. Previously, both our group and several other
groups have developed models for some of these endpoints but using limited data or, in some cases, lacking
rigor in both curation of the reported data and model validation strategies. This project addresses these
deficiencies. We recently formed Predictive, LLC, to enable the development and distribution of commercial and
regulatory strength models to predict important toxicity endpoints. In this Phase I STTR application, we intend to
produce rigorously validated models of all “6-pack” assays, transfer these models to Predictive, LLC, and
integrate these models into a software product termed STopTox (Systemic and Topical Toxicity) Predictor. We
will achieve this objective by focusing on the following Specific Aims. Specific Aim 1. Develop advanced
models for the “6-pack” battery of tests. We will ingest new data and develop new consensus models using
multiple types of descriptors and advanced modeling techniques, including deep learning methods. We will also
generate a Bayesian model applying individual predictions of each unique model as descriptors, which could
assess if a compound would be active in any of the 6-pack tests. Specific Aim 2: Model interpretation and
elucidation of adverse outcomes pathways (AOPs.) We will enable protocols and tools for model
interpretation, which is an important part of regulatory decision support, both in terms of pf chemical features
responsible for toxicity, and respective AOPs. Predictive probability maps will be implemented as a graphical
visualization of the predicted fragment contribution, allowing the user to interpret the prediction and design safer
compounds. In a parallel effort, we will work on the issue of AOPs, which is very important for a mechanistic
understanding of toxicity mechanisms and regulatory acceptance of new chemicals. Specific Aim 3: STopTox
platform development. Predictive, LLC, will implement all models in a software that will run both locally
standalone and on a secure web portal. Testing will be done both internally and by external users. Predictions
for individual models, the smart-consensus Bayesian models, as well as predicted fragment contributions, will
be displayed on the screen and the user will be able to download a report with the results and a summary of
characteristics of the models and instructions to help interpret the results. The ultimate objective of this proposal
is to leverage public data knowledge on compounds tested in “6-pack” regulatory assays by creating a software
platform (STopTox) to be commercialized as a service or licensed to commercial users.
强烈需要开发新的替代方法(NAM)来减少化学动物测试,
化妆品和药品以评估化学毒性。 “ 6包”的监管测定
(急性口服毒性,急性皮肤毒性,急性吸入毒性,皮肤刺激和腐蚀,眼睛刺激和
腐蚀和皮肤敏感性)是化学产品必须进行的测试集合的集合
监管批准。可以准确估计实验结果的计算方法
测试可以为体内调查提供有力的替代方法。以前,我们的小组和其他几个
小组为其中一些终点开发了模型,但使用有限的数据或在某些情况下缺乏
在报告的数据和模型验证策略的策划中严格。这个项目解决了这些
缺陷。我们最近成立了预测性有限责任公司,以使商业的开发和分配和分布
调节强度模型预测重要的毒性终点。在此阶段I sttr应用程序中,我们打算
生成了所有“ 6包”测定法的严格验证模型,将这些模型转移到Predictive,LLC和
将这些模型集成到称为stoptox(系统性和局部毒性)预测因子的软件产品中。我们
将通过关注以下特定目标来实现这一目标。特定目标1。发展高级
“ 6包”测试电池的型号。我们将摄入新数据并使用
多种类型的描述符和高级建模技术,包括深度学习方法。我们也会
生成一个贝叶斯模型,该模型应用每个唯一模型作为描述符的个人预测,可以
评估化合物是否在任何6件包测试中都活跃。特定目标2:模型解释和
阐明不良结果途径(AOPS)。我们将启用模型的协议和工具
解释是监管决策支持的重要组成部分,既在PF化学特征方面
负责毒性和相对AOP。预测概率图将作为图形实现
可视化预测的片段贡献,使用户可以解释预测和设计更安全
化合物。在平行的努力中,我们将研究AOP的问题,这对于机械方面非常重要
了解毒性机制和新化学物质的调节接受。特定目标3:stoptox
平台开发。 Predictive,LLC将在将在本地运行的软件中实现所有模型
独立并在安全的Web门户上。测试将在内部和外部用户进行。预测
对于单个模型,智能传记的贝叶斯模型以及预测的碎片贡献将
显示在屏幕上,用户将能够下载带有结果的报告和摘要
模型和指示的特征,以帮助解释结果。该提议的最终目标
是通过创建软件来利用在“ 6包”调节案中测试的化合物的公共数据知识
平台(StopTox)将作为服务商业化或获得商业用户的许可。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STopTox: An in Silico Alternative to Animal Testing for Acute Systemic and Topical Toxicity.
- DOI:10.1289/ehp9341
- 发表时间:2022-03
- 期刊:
- 影响因子:10.4
- 作者:Borba JVB;Alves VM;Braga RC;Korn DR;Overdahl K;Silva AC;Hall SUS;Overdahl E;Kleinstreuer N;Strickland J;Allen D;Andrade CH;Muratov EN;Tropsha A
- 通讯作者:Tropsha A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tropsha其他文献
Alexander Tropsha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tropsha', 18)}}的其他基金
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
- 批准号:
10398798 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现
- 批准号:
10613499 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
Artificial Intelligence Toolkit for Predicting Mixture Toxicity
用于预测混合物毒性的人工智能工具包
- 批准号:
10379210 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10706749 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10057067 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
ARAGORN: Autonomous Relay Agent for Generation Of Ranked Networks
ARAGORN:用于生成排名网络的自主中继代理
- 批准号:
10543636 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
Drug Repurposing for Cancer Therapy: From Man to Molecules to Man
癌症治疗的药物再利用:从人到分子再到人
- 批准号:
9337383 - 财政年份:2016
- 资助金额:
$ 25.55万 - 项目类别:
Robust computational framework for predictive ADME-Tox modeling
用于预测 ADME-Tox 建模的强大计算框架
- 批准号:
7433931 - 财政年份:2006
- 资助金额:
$ 25.55万 - 项目类别:
Protein Structure/Function Specific Packing Motifs
蛋白质结构/功能特异性包装基序
- 批准号:
7150789 - 财政年份:2006
- 资助金额:
$ 25.55万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
- 批准号:
10495114 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Sex-specific Impact of Prenatal Opioids on Brain Reward Signaling and Neonatal Feeding Regulation
产前阿片类药物对大脑奖赏信号和新生儿喂养调节的性别特异性影响
- 批准号:
10506345 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
A Novel Approach to Target Neutrophilic Airway Inflammation and Airway Hyperresponsiveness in Therapy-Resistant (Refractory) Asthma.
一种针对难治性哮喘中性粒细胞性气道炎症和气道高反应性的新方法。
- 批准号:
10659658 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
- 批准号:
10722518 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
- 批准号:
10759804 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别: