Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
基本信息
- 批准号:10750556
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdverse reactionsAffinityAlgorithmsBindingBinding ProteinsBinding SitesBioinformaticsCessation of lifeClinical TrialsCollaborationsCommunicationComputing MethodologiesDataDatabasesDetectionDrug Binding SiteDrug DesignDrug InteractionsDrug TargetingEducational process of instructingEmergency department visitEnvironmentEventFailureGoalsGraphHealthHospitalizationHospitalsHumanHuman bodyInformaticsKnowledgeLearningLigand BindingLigandsLocationMembrane ProteinsMentorsMethodsMolecularMolecular StructureNetwork-basedOralPathway AnalysisPatientsPharmaceutical PreparationsProtein Structure DatabasesProteinsProteomeRecording of previous eventsResearchResearch PersonnelResourcesScanningStructureSurfaceTherapeutic EffectToxic effectTrainingUniversitiesVisitWorkWritingadverse drug reactioncareerdeep learningdosagedrug developmentdrug repurposingeducation resourcesexperiencegraduate studentimprovedknowledge basemembernovelnovel therapeuticspharmacologicprediction algorithmprotein data bankprotein structureprotein structure predictionresponsesmall moleculestructural biologysuccesssymposiumwasting
项目摘要
PROJECT SUMMARY
The CDC estimates that adverse drug reactions (ADRs) cause 1.3 million emergency department visits annually
in the U.S., and that hundreds of thousands of these patients require hospitalization. ADRs are often caused by
drugs binding proteins in the body that were not intended targets. Predicting this off-target binding is difficult.
There are methods that use 3D molecular structure to predict if a small molecule can bind a given protein, but
the majority of the human proteome does not have an experimentally-solved structure. Recent breakthroughs
in protein structure prediction have enabled high confidence prediction of nearly any protein's structure from
sequence alone, meaning that we can leverage structure information for the entire human proteome in a way
that was impossible two years ago. Additionally, recent advances in structural informatics algorithms have
improved our ability to identify locations on a protein surface with high binding propensity; despite this,
current ADR prediction algorithms are unable to both leverage binding information of functionally
uncharacterized proteins and make interpretable predictions that can guide drug design. I propose to create
methods to predict drug binding pockets and ADRs in an interpretable manner at the proteome scale. I will
accomplish this by 1) building a graph representation of known and predicted drug-pocket pairs; 2) using this
graph to estimate ADRs associated with pockets and drugs; and 3) extending the pocket and ADR prediction
methods to predict and explain ADRs caused by proteome-wide off-target binding. Application of the proposed
method to the entire human proteome will allow the prediction of a drug's potential ADRs before it is used in
humans, improving drug development and reducing the number of ADRs experienced.
I will conduct this project in the lab of Dr. Russ Altman at Stanford University, where I am working toward my
long-term career goal of becoming an independent researcher developing computational methods that
accelerate drug development and aid understanding of drug response at the molecular level. My training
environment sets me up well to achieve this goal as Dr. Altman has an excellent track record of mentoring
graduate students and Stanford University provides a plethora of educational resources and a highly
collaborative research environment. The Altman group has developed algorithms for characterizing protein
microenvironments and has a history in both computational structural biology and drug response research,
providing me with easy access to experts in domains highly relevant to my proposed work. Beyond the
proposed research, my training plan includes attending seminars and conferences, collaborating with other
research groups, taking additional coursework, teaching, and oral and written communication of my work.
项目摘要
疾病预防控制中心估计,不良药物反应(ADR)每年130万急诊室访问
在美国,成千上万的患者需要住院。 ADR通常是由
人体中没有预期靶标的药物结合蛋白。很难预测这种脱靶结合。
有一些方法使用3D分子结构来预测小分子是否可以结合给定的蛋白质,但是
大多数人蛋白质组没有实验分解的结构。最近的突破
在蛋白质结构的预测中,几乎可以从任何蛋白质结构中进行高度置信
仅序列,这意味着我们可以以某种方式利用整个人类蛋白质组的结构信息
这是两年前不可能的。此外,结构信息学算法的最新进展具有
提高了我们识别具有高结合倾向的蛋白质表面位置的能力;尽管如此,
当前的ADR预测算法既无法利用功能上的绑定信息
未表征的蛋白质并做出可解释的预测,可以指导药物设计。我建议创建
以蛋白质组量表可解释的方式预测药物结合口袋和ADR的方法。我会
通过1)构建已知和预测的药袋对的图表; 2)使用此
图表以估计与口袋和药物相关的ADR; 3)扩展口袋和ADR预测
预测和解释由全蛋白质组脱靶结合引起的ADR的方法。拟议的应用
整个人类蛋白质组的方法将允许对药物的潜在ADR进行预测
人类,改善药物开发并减少经历的ADR数量。
我将在斯坦福大学的Russ Altman博士的实验室中进行该项目,在那里我正在努力
长期职业目标是成为开发计算方法的独立研究人员
加速药物开发并有助于对分子水平的药物反应理解。我的训练
由于Altman博士拥有指导的出色记录,环境使我很高兴实现这一目标
研究生和斯坦福大学提供了大量的教育资源和高度
协作研究环境。 Altman组开发了用于表征蛋白质的算法
微环境,并且在计算结构生物学和药物反应研究中都有历史,
让我轻松地访问与我建议的工作高度相关的领域专家。超越
拟议的研究,我的培训计划包括参加研讨会和会议,与其他合作
研究小组对我的工作进行其他课程,教学以及口头和书面交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Carpenter其他文献
Kristy Carpenter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: