Metalloenzyme binding affinity prediction with VM2

使用 VM2 预测金属酶结合亲和力

基本信息

  • 批准号:
    10697593
  • 负责人:
  • 金额:
    $ 31.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

Project summary: It is estimated that 40 to 50% of known enzymes can be characterized as metalloenzymes, while currently only 7% of FDA-approved drugs in the United States target this class of protein. This is despite the fact that there are many dozens of already identified metalloenzyme targets involved in virtually every therapeutic area, including anti-inflammatory, antibiotics, antivirals, anticancer drugs, and more. This is in large part because the already very difficult drug design requirement to maintain/increase the potency of an initial ligand (drug-like molecule) while improving/maintaining its target selectivity and pharmacokinetic properties, is made even harder by the complicated and often non-intuitive nature of metal-ligand and metal-protein interactions. Accurate molecular modeling predictions of metalloenzyme-ligand binding affinities, then, would be highly impactful in pharmaceutical industry drug research and development programs, because they would allow R&D scientists to carry out computational experiments drastically reducing the number of expensive and time-consuming bench experiments required to overcome the difficult metalloenzyme inhibitor design challenges they face. However, currently available molecular modeling approaches are unable to make predictions reliable enough to do this. Docking and scoring methods are able to determine, in many cases, the pose of inhibitors in metalloenzyme active sites, but they cannot correctly rank candidate inhibitors in order of binding affinity as they lack the required detail in their energy models. Recently, free energy-based methods have advanced to the point of providing reliable binding affinity predictions for many non-metal protein-ligand series and can, therefore, help speed ligand discovery efforts for these systems. They cannot provide good binding affinities for metalloenzyme-ligand systems though, because to-date they are all entirely based on classical forcefields, which fundamentally limits the accuracy of their descriptions of metal-ligand and metal-protein interactions. This is due, in part, to lack of inclusion of important polarization and charge transfer effects, but it is also because the complex electronic structure, which metals often exhibit, is intrinsically quantum mechanical. This fast-track SBIR proposal will address this by developing a new and unique molecular modeling software tool called Mzyme-QM-VM2, which will provide reliably accurate binding free energies for metalloenzyme- inhibitor complexes by a novel combination of statistical mechanics and highly scalable quantum chemistry methods. This software will be based on mining minima free energy calculation methodology and will be developed as an extension of VeraChem's VM2 free energy software platform.
项目摘要:据估计,已知酶的40%至50%可以被描述为金属酶,即 尽管目前,美国只有7%的FDA批准药物以这种蛋白质为目标。尽管如此 几乎每个都涉及的金属酶靶标已经有很多已经确定的金属酶靶标这个事实 治疗区域,包括抗炎,抗生素,抗病毒药,抗癌药等。这很大 部分是因为已经非常困难的药物设计要求保持/增加初始效力 配体(类似药物的分子),同时改善/维持其靶标的选择性和药代动力学特性, 由于金属配体和金属蛋白质的复杂且通常是非直觉的性质,使得更加困难 互动。因此 在制药行业的药物研发计划中具有很高的影响,因为它们会 允许研发科学家进行计算实验,以大大减少昂贵的数量和 克服困难的金属酶抑制剂设计所需的耗时台式实验 他们面临的挑战。但是,目前可用的分子建模方法无法做出 预测足以做到这一点。对接和评分方法在许多情况下能够确定 金属酶活性位点的抑制剂姿势,但不能按顺序正确对候选抑制剂进行排名 具有绑定亲和力,因为它们缺乏能量模型中所需的细节。最近,基于自由能的方法具有 提前到为许多非金属蛋白质序列提供可靠的结合亲和力预测 因此,可以帮助加快这些系统的配体发现工作。他们不能提供良好的约束力 但是,金属酶 - 配体系统的亲和力,因为迄今 力场,从根本上限制了其对金属配体和金属蛋白的描述的准确性 互动。这部分原因是缺乏重要的极化和电荷传递效应,但 这也是因为金属经常表现出的复杂电子结构本质上是量子机械的。 这个快速轨道SBIR提案将通过开发新的独特分子建模软件来解决这一问题 称为Mzyme-QM-VM2的工具,它将为金属酶提供可靠的准确结合自由能 抑制剂复合物通过统计力学和高度可扩展的量子化学的新型组合 方法。该软件将基于采矿最小自由能计算方法,将是 开发为Verachem的VM2自由能量软件平台的扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Webb其他文献

Simon Webb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Webb', 18)}}的其他基金

Covalent protein-ligand binding affinities with VM2
与 VM2 的共价蛋白-配体结合亲和力
  • 批准号:
    10311541
  • 财政年份:
    2020
  • 资助金额:
    $ 31.15万
  • 项目类别:
Statistical mechanics with quantum potentials: Application to protein-ligand binding affinities
量子势统计力学:在蛋白质-配体结合亲和力中的应用
  • 批准号:
    9795701
  • 财政年份:
    2018
  • 资助金额:
    $ 31.15万
  • 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
  • 批准号:
    9248382
  • 财政年份:
    2014
  • 资助金额:
    $ 31.15万
  • 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
  • 批准号:
    8650081
  • 财政年份:
    2014
  • 资助金额:
    $ 31.15万
  • 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
  • 批准号:
    8991772
  • 财政年份:
    2014
  • 资助金额:
    $ 31.15万
  • 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
  • 批准号:
    9040209
  • 财政年份:
    2014
  • 资助金额:
    $ 31.15万
  • 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
  • 批准号:
    8217262
  • 财政年份:
    2010
  • 资助金额:
    $ 31.15万
  • 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
  • 批准号:
    7906160
  • 财政年份:
    2010
  • 资助金额:
    $ 31.15万
  • 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
  • 批准号:
    8440752
  • 财政年份:
    2010
  • 资助金额:
    $ 31.15万
  • 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
  • 批准号:
    8200192
  • 财政年份:
    2010
  • 资助金额:
    $ 31.15万
  • 项目类别:

相似海外基金

Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
  • 批准号:
    10606798
  • 财政年份:
    2023
  • 资助金额:
    $ 31.15万
  • 项目类别:
Research and cloud deployment of enhanced sampling methods in MovableType
MovableType中增强采样方法的研究和云部署
  • 批准号:
    10699159
  • 财政年份:
    2023
  • 资助金额:
    $ 31.15万
  • 项目类别:
PAIRS: Validating telomerase reverse transcriptase (TERT) as an intrinsic vulnerability toward sensitizing cancer to radiation
配对:验证端粒酶逆转录酶 (TERT) 作为癌症对辐射敏感的内在脆弱性
  • 批准号:
    10718390
  • 财政年份:
    2023
  • 资助金额:
    $ 31.15万
  • 项目类别:
Structure of GDAP1 bound to a product of lipid peroxidation
与脂质过氧化产物结合的 GDAP1 的结构
  • 批准号:
    10645396
  • 财政年份:
    2023
  • 资助金额:
    $ 31.15万
  • 项目类别:
Development of a Mechanism and Structure-Guided Methodology for De Novo Enzyme Design
开发从头酶设计的机制和结构引导方法
  • 批准号:
    10231920
  • 财政年份:
    2021
  • 资助金额:
    $ 31.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了