Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
基本信息
- 批准号:10599738
- 负责人:
- 金额:$ 32.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdultAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAttitudeAwarenessBeneficenceBioethics ConsultantsBiomedical ResearchCase StudyCommunitiesDataData CollectionDecision MakingDevelopmentDiseaseEducationEducational MaterialsEffectivenessEthical IssuesEthicsEvaluationFamilyFamily CaregiverFocus GroupsGenesGeneticGovernmentImmersionIndividualIntuitionJusticeKnowledgeLeadLearningMeasuresMedicalMethodsModelingMolecularNeurologistNonmaleficenceResearchResearch DesignResearch EthicsResearch PersonnelScientific InquirySocial WorkersSurveysTestingTrainingTraining ProgramsWorkalgorithm developmentbasedeep learningdesigneffectiveness evaluationendophenotypeevidence baseexperienceexperimental studyexplicit biashealth disparityimplicit biasneuroimagingparent grantprofession allied to medicineprogramstoolusabilityvirtual realityvirtual reality environment
项目摘要
Supplement to Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer’s
Disease.
Abstract
AI/ML provides unprecedented opportunities for biomedical researchers, such as the quick identification of the
genetic basis of diseases, including Alzheimer’s Disease (AD). For instance, the parent grant proposes new
deep learning based approaches for deriving AD-relevant endophenotypes from neuroimaging data, and
associating these endophenotypes to genetic data. It expects to discover new genes relevant to AD which may
lead to a better understanding of the molecular basis of AD and potential new treatments.
However, AI/ML methods could bring potential biases in the design and implementation of data collection,
training data, as well as algorithm development. Such biases may lead to problematic findings and may further
contribute to health disparity. Recent years have witnessed the heightened scholarly and societal discussion of
principles of ethical AI; however, there is limited empirical data or evidence-based mechanisms that have
demonstrated researchers’ knowledge, attitudes, or perspectives on ethical issues that impact the
development of AI/ML algorithms or how they consider integrating research ethics into their work. Furthermore,
how to develop and deliver effective AI ethics education is another issue that requires systematic scientific
inquiry.
This proposed supplement brings together AI researchers and bioethicists to create the first measure scale to
measure medical AI researchers’ attitudes toward AI research principles (beneficence, non-maleficence,
justice, and responsibility) and their knowledge about how to use these principles to guide ethical decision
making in conducting Alzheimer’s Disease Research using AI through the use of case study vignettes.
To create effective AI ethics education geared toward AI AD researchers, we bring in virtual-reality serious
game designers to develop a VR-based, interactive application for education on ethical decision-making
medical AI in research. Such an interactive and immersive mode of delivering educational materials has been
shown to lead to more engagement, enjoyment, and higher effectiveness, compared to traditional educational
channels. Information collected from researchers as well as a community advisory board will also inform the
development of this AI ethics training program. The usability and effectiveness of the VR application will be
evaluated using post-test survey and focus group.
对阿尔茨海默氏症的深度学习衍生神经影像型的遗传学补充
疾病。
抽象的
AI/ML为生物医学研究人员提供了前所未有的机会,例如快速识别
疾病的遗传基础,包括阿尔茨海默氏病(AD)。例如,父母赠款提案新
基于深度学习的方法,用于从神经影像数据中得出与广告相关的内型型,
将这些内表型与遗传数据相关联。它希望发现与AD相关的新基因
可以更好地理解AD的分子基础和潜在的新疗法。
但是,AI/ML方法可以在数据收集的设计和实施中带来潜在的偏见,
培训数据以及算法开发。这种偏见可能会导致有问题的发现,并可能进一步
对健康差异的贡献。近年来见证了对科学和社会讨论的高度讨论
道德AI的原则;但是,具有有限的经验数据或基于证据的机制
展示了研究人员的知识,参与者或观点,以影响影响的道德问题
AI/ML算法的开发或他们如何考虑将研究整合到工作中。此外,
如何发展和提供有效的AI伦理教育是另一个需要系统科学的问题
询问。
该提出的补充剂汇集了AI研究人员和生物伦理学家,以创建第一个测量量表
衡量医学AI研究人员的参与者对AI研究原则(福利,非遗憾,
正义和责任)以及他们有关如何使用这些原则指导道德决定的知识
通过使用案例研究viNettes,使用AI进行AI进行阿尔茨海默氏病研究。
为了创建针对AI AD研究人员的有效的AI道德教育,我们使虚拟现实认真
游戏设计师将开发基于VR的,互动式的教育应用程序,以进行道德决策
研究中的医学AI。这种交付教育材料的互动和沉浸式模式已经
与传统的教育相比
频道。从研究人员那里收集的信息以及社区顾问委员会还将通知
制定该AI道德培训计划。 VR应用程序的可用性和有效性将是
使用测试后调查和焦点小组进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MYRIAM FORNAGE其他文献
MYRIAM FORNAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MYRIAM FORNAGE', 18)}}的其他基金
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10369339 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10653800 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10675679 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
- 批准号:
10827718 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10611823 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10436262 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10212068 - 财政年份:2021
- 资助金额:
$ 32.32万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9792270 - 财政年份:2016
- 资助金额:
$ 32.32万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9272153 - 财政年份:2016
- 资助金额:
$ 32.32万 - 项目类别:
ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems
通过内表型、组学对多种族队列进行 ADSP 随访
- 批准号:
9078875 - 财政年份:2016
- 资助金额:
$ 32.32万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10852318 - 财政年份:2023
- 资助金额:
$ 32.32万 - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 32.32万 - 项目类别:
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:
10680745 - 财政年份:2023
- 资助金额:
$ 32.32万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 32.32万 - 项目类别:
A novel therapeutic application of closed-loop neuromodulation of the brain reward system in nicotine use disorder
大脑奖励系统闭环神经调节在尼古丁使用障碍中的新治疗应用
- 批准号:
10583658 - 财政年份:2023
- 资助金额:
$ 32.32万 - 项目类别: