Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
基本信息
- 批准号:10827718
- 负责人:
- 金额:$ 38.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Administrative SupplementAffectAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAmericanArchitectureAreaAwardBenchmarkingBiologyCaregiversClinicalClinical TrialsCollaborationsCommunitiesComputer softwareCoupledDataData SetDementiaElderlyFunctional disorderFundingGeneticGenetic MarkersGenetic studyGoalsGrantGraphHealthcareHeritabilityImageImpaired cognitionInvestigationLinkMachine LearningMagnetic Resonance ImagingMemoryMethodsModelingOutcome MeasureParentsPatientsPhenotypePrevention strategyProcessPrognosisPublic HealthReproducibilityResearchResourcesSoftware ToolsStandardizationSuggestionTestingTimeU-Series Cooperative AgreementsUnited States National Institutes of HealthWorkartificial intelligence algorithmbiobankbrain magnetic resonance imagingclinical predictorsdata standardsdeep learningdisorder riskendophenotypegenetic architecturegenetic associationgenome wide association studygenomic locushigh dimensionalityhuman old age (65+)imaging geneticsimprovedinterestlearning strategymultimodal neuroimagingneuralneuroimagingnoveloutcome predictionparent grantprogramsresponsesynergismtherapeutic developmenttraitvectorwhole genome
项目摘要
Project Summary
Alzheimer’s disease (AD) is characterized by the progressive impairment of cognitive and memory functions
and is the most common form of dementia in the elderly. It affects 5.6 million Americans over the age of 65 and
exacts tremendous and increasing demands on patients, caregivers, and healthcare resources, making this
condition among the most significant public health problems of our time. Despite extensive studies, our
understanding of the biology and pathophysiology of AD is still limited, hindering advances in the development
of therapeutic and preventive strategies. Genetic studies of AD have successfully identified 40 novel loci but
these explain only a fraction of the overall disease risk, suggesting opportunities for additional discoveries.
Advanced neuroimaging is an essential part of current AD clinical and research investigations, which generally
focus on relatively few imaging phenotypes developed by neuro- radiologists. However, there is a growing
interest in exploiting the high-content information in large-scale, high dimensional multimodal neuroimaging
data to identify novel AD biomarkers. Deep learning (DL) methods, an emerging area of machine learning
research, uses raw images to derive optimal vector representations of imaging contents, which can be used as
informative AD endophenotypes. The overall goal of the proposed supplement is to benchmark the AI
algorithms we are developing on a standardized neuroimaging dataset. We will work on two topics: Predicting
clinical decline (prognosis) from baseline T1-weighted brain MRI, and Discovery of genetic loci in whole-
genome sequence data associated with brain MRI-derived endophenotypes. This is a collaboration with the
other two U01 awards to improve the rigor and reproducibility. We will make the software tools and results
publicly available. This will positively impact the larger research community.
项目概要
阿尔茨海默病(AD)的特点是认知和记忆功能进行性损害
它是老年人中最常见的痴呆症,影响着 560 万 65 岁以上的美国人。
对患者、护理人员和医疗保健资源提出了巨大且不断增长的要求,使得
尽管进行了广泛的研究,但我们仍然认为这是我们这个时代最重要的公共卫生问题之一。
对 AD 的生物学和病理生理学的了解仍然有限,阻碍了发展的进步
AD 的治疗和预防策略的遗传学研究已成功鉴定出 40 个新基因座,但
这些仅解释了总体疾病风险的一小部分,表明有更多发现的机会。
先进的神经影像学是当前 AD 临床和研究的重要组成部分,通常
关注神经放射学家开发的相对较少的成像表型,但是,这种成像表型正在不断增长。
对利用大规模、高维多模态神经成像中的高内容信息感兴趣
数据来识别新型AD生物标志物深度学习(DL)方法,这是机器学习的一个新兴领域。
研究,使用原始图像来导出成像内容的最佳矢量表示,可以用作
所提出的补充的总体目标是对人工智能进行基准测试。
我们正在标准化神经影像数据集上开发的算法我们将致力于两个主题:预测。
与基线 T1 加权脑 MRI 相比,临床衰退(预后),以及发现整体遗传位点
与大脑 MRI 衍生的内表型相关的基因组序列数据这是与
另外两个U01奖项旨在提高软件工具和结果的严谨性和可重复性。
这将对更大的研究界产生积极影响。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The spread of COVID-19 vaccine information in Arabic on YouTube: A network exposure study.
YouTube 上阿拉伯语 COVID-19 疫苗信息的传播:一项网络曝光研究。
- DOI:10.1177/20552076231205714
- 发表时间:2023-01
- 期刊:
- 影响因子:3.9
- 作者:Zeid, Nour;Tang, Lu;Amith, Muhammad Tuan
- 通讯作者:Amith, Muhammad Tuan
Mining the Metabolic Capacity of Clostridium sporogenes Aided by Machine Learning.
机器学习辅助挖掘产孢梭菌的代谢能力。
- DOI:10.1002/anie.202319925
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Ouyang,Huanrong;Xu,Zhao;Hong,Joshua;Malroy,Jeshua;Qian,Liangyu;Ji,Shuiwang;Zhu,Xuejun
- 通讯作者:Zhu,Xuejun
Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts.
- DOI:10.1038/s41598-022-20646-1
- 发表时间:2022-09-27
- 期刊:
- 影响因子:4.6
- 作者:Tang, Yi-Ching;Powell, Reid T.;Gottlieb, Assaf
- 通讯作者:Gottlieb, Assaf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MYRIAM FORNAGE其他文献
MYRIAM FORNAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MYRIAM FORNAGE', 18)}}的其他基金
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10369339 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10653800 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10675679 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
- 批准号:
10599738 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10611823 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10436262 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10212068 - 财政年份:2021
- 资助金额:
$ 38.06万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9792270 - 财政年份:2016
- 资助金额:
$ 38.06万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9272153 - 财政年份:2016
- 资助金额:
$ 38.06万 - 项目类别:
ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems
通过内表型、组学对多种族队列进行 ADSP 随访
- 批准号:
9078875 - 财政年份:2016
- 资助金额:
$ 38.06万 - 项目类别:
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用小鼠模型研究Y染色体丢失对阿尔茨海默病的影响及分子机制
- 批准号:32260148
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Dissecting the Role of Arachidonic Acid Metabolic Pathways Involved in Resolution Versus Progression of PM-Induced Cardiometabolic Toxicity
剖析花生四烯酸代谢途径在 PM 诱导的心脏代谢毒性的消退与进展中的作用
- 批准号:
10716093 - 财政年份:2023
- 资助金额:
$ 38.06万 - 项目类别:
Administrative Supplement to Molecular Segregation of Parkinson’s Disease by Patient-derived Neurons
患者来源神经元对帕金森病分子分离的行政补充
- 批准号:
10709193 - 财政年份:2023
- 资助金额:
$ 38.06万 - 项目类别:
Alzheimer's Disease and Related Dementias (ADRD) prevalence in American Samoa
美属萨摩亚阿尔茨海默病和相关痴呆症 (ADRD) 患病率
- 批准号:
10523978 - 财政年份:2022
- 资助金额:
$ 38.06万 - 项目类别:
Exploring CRMP5 as a novel target for Alzheimers disease
探索 CRMP5 作为阿尔茨海默病的新靶点
- 批准号:
10712329 - 财政年份:2022
- 资助金额:
$ 38.06万 - 项目类别:
Administrative supplement to Regulation of mitochondrial DNA homeostasis and neuroinflammation by Fascin
Fascin 调节线粒体 DNA 稳态和神经炎症的行政补充
- 批准号:
10808414 - 财政年份:2022
- 资助金额:
$ 38.06万 - 项目类别: