Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease

阿尔茨海默病深度学习神经影像内表型的遗传学

基本信息

项目摘要

Alzheimer's disease (AD) is characterized by the progressive impairment of cognitive and memory functions and is the most common form of dementia in the elderly. It affects 5.6 million Americans over the age of 65 and exacts tremendous and increasing demands on patients, caregivers, and healthcare resources, making this condition among the most significant public health problems of our time. Despite extensive studies, our understanding of the biology and pathophysiology of AD is still limited, hindering advances in the development of therapeutic and preventive strategies. Genetic studies of AD have successfully identified 40 novel loci but these explain only a fraction of the overall disease risk, suggesting opportunities for additional discoveries. Advanced neuroimaging is an essential part of current AD clinical and research investigations, which generally focus on relatively few imaging phenotypes developed by neuro- radiologists. However, there is a growing interest in exploiting the high-content information in large-scale, high dimensional multimodal neuroimaging data to identify novel AD biomarkers. Deep learning (DL) methods, an emerging area of machine learning research, uses raw images to derive optimal vector representations of imaging contents, which can be used as informative AD endophenotypes. To overcome the low interpretability traditionally attributed to DL, whole genome sequence data provide an opportunity to identify novel genes underlying the DL- derived imaging endophenotypes and test their association with AD and AD-related traits in large cohort samples. The proposed project will leverage existing neuroimaging and genetic data resources from the UK Biobank, the Alzheimer's Disease Sequencing Project (ADSP), the Alzheimer's Disease Neuroimaging Initiative (ADNI), and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and will be conducted by a multidisciplinary team of investigators. We will derive AD endophenotypes from neuroimaging data in the UK Biobank using deep learning (DL). We will identify novel genetic loci associated with DL-derived imaging endophenotypes and optimize the co-heritability of these endophenotypes with AD-related phenotypes using UK Biobank genetic data. We will leverage resources and collaborations with AD Consortia and the power of DL-derived neuroimaging endophenotypes to identify novel genes for Alzheimer's Disease and AD-related traits. Also, we will develop DL-based neuroimaging harmonization and imputation methods and distribute implementation software to the research community. We expect to discover new genes relevant to AD which may leads to understanding of molecular basis of AD and potential new treatment.
阿尔茨海默氏病 (AD) 的特点是认知和功能进行性损害 记忆功能障碍,是老年人痴呆症最常见的形式。影响560万人 65岁以上的美国人对患者提出了巨大且不断增加的要求, 护理人员和医疗资源,使这种情况成为最重要的公众 我们这个时代的健康问题。尽管进行了广泛的研究,我们对生物学的理解和 AD 的病理生理学仍然有限,阻碍了治疗和药物开发的进展 预防策略。 AD 的遗传学研究已成功鉴定出 40 个新基因座,但这些基因座 仅解释了总体疾病风险的一小部分,这表明有机会进行额外的研究 发现。先进的神经影像学是当前 AD 临床和研究的重要组成部分 研究,通常集中于由神经系统开发的相对较少的成像表型 放射科医生。然而,人们对利用高内容信息越来越感兴趣。 大规模、高维多模态神经影像数据来识别新型 AD 生物标志物。 深度学习 (DL) 方法是机器学习研究的一个新兴领域,它使用原始图像 导出成像内容的最佳向量表示,可用作信息 AD内表型。为了克服传统上归因于深度学习的低可解释性,整个 基因组序列数据提供了识别 DL- 背后的新基因的机会 衍生成像内表型并测试它们与 AD 和 AD 相关特征的关联 大队列样本。拟议的项目将利用现有的神经影像和遗传 来自英国生物银行、阿尔茨海默病测序项目 (ADSP)、 阿尔茨海默病神经影像计划 (ADNI) 以及心脏和衰老队列 基因组流行病学研究 (CHARGE) 联盟将由 多学科研究小组。我们将从神经影像学中得出 AD 内表型 英国生物银行中使用深度学习 (DL) 的数据。我们将确定相关的新遗传位点 具有DL衍生的成像内表型并优化这些的共同遗传性 使用英国生物银行遗传数据分析内表型与 AD 相关表型。我们将利用 与 AD Consortia 的资源和合作以及深度学习衍生的神经影像的力量 内表型来识别阿尔茨海默病和 AD 相关特征的新基因。另外,我们 将开发基于深度学习的神经影像协调和插补方法并分发 向研究界提供实施软件。我们期望发现相关的新基因 AD 的研究可能有助于了解 AD 的分子基础和潜在的新治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MYRIAM FORNAGE其他文献

MYRIAM FORNAGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MYRIAM FORNAGE', 18)}}的其他基金

Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
  • 批准号:
    10369339
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10653800
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10675679
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
  • 批准号:
    10827718
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
  • 批准号:
    10611823
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
  • 批准号:
    10599738
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10436262
  • 财政年份:
    2021
  • 资助金额:
    $ 140.63万
  • 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
  • 批准号:
    9792270
  • 财政年份:
    2016
  • 资助金额:
    $ 140.63万
  • 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
  • 批准号:
    9272153
  • 财政年份:
    2016
  • 资助金额:
    $ 140.63万
  • 项目类别:
ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems
通过内表型、组学对多种族队列进行 ADSP 随访
  • 批准号:
    9078875
  • 财政年份:
    2016
  • 资助金额:
    $ 140.63万
  • 项目类别:

相似国自然基金

生物炭原位修复底泥PAHs的老化特征与影响机制
  • 批准号:
    42307107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
  • 批准号:
    42307503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
  • 批准号:
    82360625
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
  • 批准号:
    42377093
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
  • 批准号:
    42307479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 140.63万
  • 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
  • 批准号:
    10555899
  • 财政年份:
    2023
  • 资助金额:
    $ 140.63万
  • 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
  • 批准号:
    10645610
  • 财政年份:
    2023
  • 资助金额:
    $ 140.63万
  • 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
  • 批准号:
    10746348
  • 财政年份:
    2023
  • 资助金额:
    $ 140.63万
  • 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
  • 批准号:
    10606234
  • 财政年份:
    2023
  • 资助金额:
    $ 140.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了