Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
基本信息
- 批准号:10680745
- 负责人:
- 金额:$ 47.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Absence of pain sensationAcuteAdoptedAdultAgonistAlgorithmsAnalgesicsBackCessation of lifeChronicClinicalClinical ManagementCollaborationsComputer AssistedDangerousnessDockingDrug DesignFeedbackG-Protein-Coupled ReceptorsGeneticLigandsMethodsModelingMolecular ConformationOpiate AddictionOpioid ReceptorPain managementPharmaceutical PreparationsPlayPropertyProteinsRapid screeningResourcesRoleSignal PathwaySignal TransductionSignaling ProteinStructureTherapeuticTimeVentilatory Depressioncomputational platformdeep learningdesigndesigner receptors exclusively activated by designer drugsdrug discoveryin silicoinnovationinterestlead optimizationmu opioid receptorsnovelopioid therapyopioid use disorderplasma protein Zprescription opioidprotein structure predictionreceptorrecruitside effectsmall moleculesmall molecule librariestargeted treatmenttherapeutic opioidtool
项目摘要
PROJECT SUMMARY
Prescription opioid therapy plays a critical role in the clinical management of pain in multiple acute and chronic
settings. The challenges of effective pain management have led to over 2 million adults in the US, and over 12
million globally, with an opioid use disorder (OUD). OUD accounts for over 120,000 deaths annually worldwide.
The dominant target of therapeutic opioids is the µ-opioid receptor (MOR). The analgesic effects of MOR
agonists are due to Gα,i/o/z-protein signaling, and it has been proposed that undesirable side-effects of MOR
agonists, such as respiratory depression and tolerance, can be mitigated through partial recruitment of Gi/o/z-
protein subtypes. Thus, it is of clinical interest to determine the relationship between MOR signaling and
analgesia versus side-effects to guide the design of therapeutic agonists that selectively activate the desired
signaling pathway. G-protein coupled receptors (GPCRs), including MOR, are known to adopt a range of
different functionally distinct configurations upon engaging orthosteric modulators and/or intracellular effector
proteins. These induced-fit structural rearrangements cannot be modeled with existing computer-aided drug
discovery algorithms during docking or design due to the time and resources required.
It is the objective of this proposal to develop a customizable, multi-purpose computer-aided drug
design (CADD) platform that can efficiently model largescale induced-fit conformational changes
during small molecule and/or receptor sequence design. Completion of the proposal will enable structure-
based design of biased agonists and DREADDs (Designer Receptors Exclusively Activated by Designer
Drugs). This proposal will include innovative algorithms that leverage deep learning protein structure prediction
methods and ultra-large make-on-demand chemical libraries to rapidly screen synthetically accessible
molecules for those that can induce conformational changes required to activate G¬i¬-protein signaling in
MOR. In collaboration, I will synthesize (Dr. Craig Lindsley), functionally validate (Drs. Craig Lindsley, Heidi
Hamm, and Vsevolod Gurevich), and structurally characterize (Drs. Beili Wu and Matthias Elgeti) designed
molecules and DREADDs. Experimentally validated partial and biased agonists and DREADDs will be fed back
into the computational platform to be used as starting points for subsequent rounds of optimization. In this way,
we will establish a computational-experimental iterative feedback loop.
项目摘要
处方阿片类药物疗法在多重急性和慢性的疼痛临床管理中起着至关重要的作用
设置。有效疼痛管理的挑战导致了美国超过200万成年人,超过12个成年人
全球百万,有阿片类药物使用障碍(OUD)。 OUD每年在全球范围内占120,000多人死亡。
治疗性阿片类药物的主要靶标是阿片受体(MOR)。 MOR的镇痛作用
激动剂归因于Gα,I/O/Z-蛋白信号,并且已经提出了MOR的不良副作用
激动剂,例如呼吸道抑郁和耐受性,可以通过部分募集GI/O/Z-来缓解。
蛋白质亚型。这是临床感兴趣的是确定MOR信号传导与
镇痛与副作用,以指导选择性激活所需的治疗性激动剂的设计
信号通路。已知包括MOR在内的G蛋白偶联受体(GPCR)采用一系列
引人入胜的直角调节器和/或细胞内效应器时,功能上不同的配置不同
蛋白质。这些诱导的拟合结构重排不能用现有的计算机辅助药物建模
由于所需的时间和资源,在对接或设计过程中发现算法。
该提案的目的是开发可自定义的多功能计算机辅助药物
设计(CADD)平台,可以有效地对大规模建模诱导拟合咨询更改
在小分子和/或接收器序列设计中。提案的完成将使结构 -
基于偏见的激动剂和Dreadds的设计(设计师专门由设计师激活的设计师受体
药物)。该建议将包括利用深度学习蛋白结构预测的创新算法
方法和超大型制成化学库,可快速筛选合成的筛选
对于那些可以诱导激活g的蛋白信号传导所需构象变化的分子的分子
莫在合作中,我将合成(Craig Lindsley博士),功能验证(Heidi Craig Lindsley博士
HAMM和VSEVOLOD GUREVICH),并在结构上进行了特征(Dr.Beili Wu和Matthias Elgeti)
分子和恐怖。经过实验验证的部分和偏见的激动剂和恐惧将被喂养
进入计算平台,用作后续优化的起点。这样,
我们将建立一个计算实验性迭代反馈循环。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Patrick Brown其他文献
Benjamin Patrick Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Patrick Brown', 18)}}的其他基金
Targeting receptor tyrosine kinases with novel methods in computer-aided drug discovery for the treatment of fibrotic renal disease
用计算机辅助药物发现的新方法靶向受体酪氨酸激酶来治疗纤维化肾病
- 批准号:
10197115 - 财政年份:2018
- 资助金额:
$ 47.55万 - 项目类别:
相似国自然基金
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
- 批准号:32301097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
- 批准号:82360379
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
- 批准号:82302221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Coordinated Spontaneous Awakening and Breathing Trials Using Telehealth-Enabled, Real-Time Audit and Feedback for Clinician AdHerence: A Type II Hybrid Effectiveness-Implementation
使用支持远程医疗的实时审核和临床医生依从性反馈来实施协调的自发觉醒和呼吸试验:II 型混合有效性实施
- 批准号:
10315222 - 财政年份:2021
- 资助金额:
$ 47.55万 - 项目类别:
Testing the feasibility of patient-controlled sedation in ventilated ICU patients
测试 ICU 通气患者自控镇静的可行性
- 批准号:
8240351 - 财政年份:2012
- 资助金额:
$ 47.55万 - 项目类别: