Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
基本信息
- 批准号:10852318
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdultAlgorithmsArizonaAtherosclerosisBehavior TherapyCardiovascular DiseasesComplementCountryDataDimensionsDiseaseDisease OutcomeEconomicsEthnic PopulationEtiologyExhibitsFamilyFoundationsFunctional disorderFutureGoalsHeart DiseasesHigh Density LipoproteinsHispanic Community Health Study/Study of LatinosHispanic PopulationsHouseholdIncidenceInterventionKnowledgeLatino PopulationLatinxLiteratureMachine LearningMeasurementMeasuresMedicalMentorsMethodsMexicanModelingModificationNeighborhoodsPopulationPublic HealthResearchResearch ProposalsResourcesRiskRisk EstimateRisk FactorsRoleSamplingSocial EnvironmentSocial NetworkSolidSpousesStrokeTestingTrainingUniversitiesValidationWorkcardiovascular disorder epidemiologycardiovascular disorder riskcardiovascular healthcardiovascular risk factorcareercultural valuesdata reductiondisease disparityexperienceimprovedmachine learning algorithmmodel developmentmortalitypredictive modelingresilienceresilience factorrisk predictionrisk prediction modelrisk selectionsocialsocial capitalsocioeconomicsstemtheories
项目摘要
PROJECT SUMMARY/ABSTRACT
Existing heart disease and stroke prediction models (e.g., Framingham) tend to overestimate risk for
Hispanics/Latinxs (H/L)s. This inaccuracy has significant economic and public health impacts associated with
inaccurate surveillance, intervention targeting, and medical management. Model inaccuracies likely stem from
pervasive underrepresentation of H/Ls in model development and validation efforts. Consequently, traditional
risk factors for cardiovascular disease (CVD) may be specific to the populations upon whom they were derived,
and not generalizable to H/Ls. In addition, there may be unique disease determinants for H/Ls that remain
untested or unincorporated leading to error in prediction. Importantly, resilience factors such as culturally-
moderated social capital may be critical to understanding risk in this population. Addressing these gaps will
lead to better understanding of CVD risk with corresponding implications for targeted intervention strategies.
This K99/R00 MOSAIC proposal will use secondary data to inform current 10-year CVD risk models using
theory and data-driven methods to increase CVD prediction model accuracy in H/Ls. The proposed training
plan establishes a solid foundation for a career investigating H/L CVD risk and resilience factors. The training
plan leverages substantial resources at The University of Arizona and a mentoring team of senior content
experts. The candidate will gain the following, 1) expertise in H/L CVD disparities, 2) advanced knowledge in
CVD epidemiology, risk, and etiology and pathophysiology of atherosclerotic disease, 3) applied machine
learning, cross-validation, and selection of risk prediction models, and 4) cultural factors and social capital
influencing H/L CVD. The research proposal has three aims focused on evaluating and informing existing 10-
year CVD prediction in H/Ls. Using secondary data from the Hispanic Community Health Study/Study of
Latinos (HCHS/SOL), the candidate will (Aim 1 – K99) evaluate the prediction accuracy of current 10-year
CVD risk models using a large H/L sample with significant representation of diverse H/Ls (HCHS/SOL). (Aim 2
– R00) the candidate will use available data to identify a group of target risk factors that improve risk prediction
in H/Ls. (Aim 3 – R00) the candidate will test whether adding a social resilience component to CVD risk
models will improve their prediction accuracy for this group. Machine learning will be used to identify valid
predictors of 10-year CVD in Latinos. The social resilience component will capture the multi-dimensionality of
social environments (e.g. spouse, family, neighborhood) using data reduction methods. The proposed research
proposal adopts a holistic view of cardiovascular health to elucidate both risk and resilience factors in this
growing ethnic group.
项目概要/摘要
现有的心脏病和中风预测模型(例如 Framingham)往往会高估风险
这种不准确的情况会对经济和公共健康产生重大影响。
不准确的监测、干预目标和医疗管理可能源于模型的不准确。
在传统的模型开发和验证工作中,H/L 的代表性普遍不足。
心血管疾病(CVD)的危险因素可能特定于其来源人群,
并且不能推广到 H/L 此外,H/L 可能还存在独特的疾病决定因素。
重要的是,诸如文化等弹性因素会导致预测错误。
适度的社会资本对于了解这一人群的风险可能至关重要。
有助于更好地了解 CVD 风险,并对有针对性的干预策略产生相应的影响。
该 K99/R00 MOSAIC 提案将使用二手数据为当前 10 年 CVD 风险模型提供信息
理论和数据驱动的方法,以提高 H/L 中 CVD 预测模型的准确性。
计划为调查 H/L CVD 风险和恢复因素的职业生涯奠定了坚实的基础。
计划利用亚利桑那大学的大量资源和高级内容指导团队
候选人将获得以下知识:1) H/L CVD 差异方面的专业知识,2) 先进的知识。
CVD流行病学、风险以及动脉粥样硬化性疾病的病因学和病理生理学,3)应用机器
风险预测模型的学习、交叉验证和选择,4) 文化因素和社会资本
H/L CVD。影响研究提案有三个目标,重点是评估和告知现有的 10-
使用来自西班牙社区健康研究/研究的二手数据对 H/L 进行年度 CVD 预测。
拉丁裔 (HCHS/SOL),候选人将(目标 1 – K99)评估当前 10 年的预测准确性
使用具有显着代表性的不同 H/L (HCHS/SOL) 的大型 H/L 样本进行 CVD 风险模型(目标 2)。
– R00)候选人将使用可用数据来识别一组改善风险预测的目标风险因素
在 H/L(目标 3 – R00)中,考生将测试是否在 CVD 风险中添加社会复原力成分。
模型将提高该组的预测准确性,机器学习将用于识别有效的内容。
拉丁美洲人 10 年 CVD 的预测因子将体现社会复原力的多维性。
使用数据缩减方法的社会环境(例如配偶、家庭、邻居)。
该提案采用心血管健康的整体观点来阐明这一领域的风险和复原力因素
不断增长的族裔群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Ann Flores其他文献
Melissa Ann Flores的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Ann Flores', 18)}}的其他基金
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10543833 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10370013 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中性粒细胞胞外诱捕网(NETs)通过AIM2炎症小体促进成人斯蒂尔病髓系细胞生成并放大细胞因子风暴的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多溴联苯醚通过肠道菌群诱导维汉成人2型糖尿病的发生及抗氧化膳食模式的拮抗作用研究
- 批准号:82160605
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
I型干扰素通过下调FOXO3介导NLRC4/NLRP3激活触发成人Still病炎症风暴的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
- 批准号:
10635492 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Share plus: Continuous Glucose Monitoring with Data Sharing in Older Adults with T1D and Their Care Partners
分享加:患有 T1D 的老年人及其护理伙伴的持续血糖监测和数据共享
- 批准号:
10660793 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: