Creating a Veteran's specific risk model to improve lung cancer screening
创建退伍军人的特定风险模型以改善肺癌筛查
基本信息
- 批准号:10588292
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:AgeArtificial IntelligenceAsbestosBiometryCalibrationCarcinogensCaringChronic Obstructive Pulmonary DiseaseClinical DataClinical ServicesDataDatabasesDepartment of DefenseEarly DiagnosisEarly treatmentElectronic Health RecordEligibility DeterminationEpidemiologyExposure toFutureGeneral PopulationGoalsGuidelinesHIVHealthHealth Services ResearchHydrocarbonsIndividualInformaticsIonizing radiationLinkLungMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMethodsModelingPatternPhenotypePopulationPositioning AttributeRaceRadiology SpecialtyRecording of previous eventsReportingRestRheumatoid ArthritisRiskRisk FactorsServicesSignal TransductionSmokeSmokerSmokingSmoking BehaviorSmoking HistorySubgroupTextTimeTobacco useUnited StatesUnited States Department of Veterans AffairsUnited States Preventative Services Task ForceVeteransagent orangeburn pitcancer diagnosiscancer riskdeep learninghazardhealth datahigh risk populationimprovedlearning strategylow socioeconomic statuslung cancer screeningmilitary servicemodel developmentmosaicnovelpulmonary functionscreeningscreening guidelinestext searching
项目摘要
Current lung cancer screening eligibility guidelines were developed in a civilian population and miss the
majority of Veterans who develop lung cancer. The guidelines include 50-80 year old heavy smokers, with a 20
or more pack years history, who either currently smoke or quit within the last 15 years. These criteria only
capture 20-35% of lung cancers in the civilian population and Veterans. Furthermore, Veterans suffer from
lung cancer at higher rates than the rest of the United States population, smoke more, and have unique
exposures to known causes of lung cancer including Agent Orange, asbestos, diesel fumes, ionizing radiation
and Open Burn Pit hydrocarbons. Veterans also have additional risk factors for lung cancer such as race, low
socio-economic status, previous history of cancer, HIV, rheumatoid arthritis and chronic obstructive pulmonary
disease (COPD) each of which have been shown to increase lung cancer risk. Other, population specific
models effectively identify at risk subgroups who may benefit from screening, but none of these models have
been validated in Veterans and none consider Veterans’ unique risks. A personalized and Veteran-specific
model that adds service-related lung cancer risks and leads to the identification of high-risk groups that may
benefit from lung cancer screening is needed. The objective of this proposal is to combine general population
and Veteran-specific lung cancer risk factors into a Veteran's lung cancer screening eligibility model. Our
overall hypothesis is that service histories and novel risk factors can be used in a Veteran-specific lung cancer
risk model to broaden the population who may benefit from lung cancer screening. This effort to improve
Veterans’ health through the early detection of lung cancer with screening has two aims.
In Aim 1 we will define and discover novel phenotypes associated with increased lung cancer risk in
Veterans that include longitudinal clinical and military service-specific exposures. We will generate a
comprehensive, longitudinal set of lung cancer risk factors from all Veterans who have received care at a VA
facility in the last decade. We will use linked Department of Defense service and VA Electronic Health Record
(EHR) data to identify service-related exposures and lung cancer risk factors. Using artificial intelligence, we
will mine unstructured text data from clinical notes radiological reports to discover novel data pattern
(phenotypes) that help predict future lung cancer diagnosis. We hypothesize that we will accurately determine
risk variables used in current eligibility models and discover a set of novel Veteran-specific phenotypes
associated with lung cancer risk. In Aim 2 we will build a Veteran-specific lung cancer screening model
and compare it to existing screening eligibility criteria and models. We will use a combination of standard
lung cancer risk variables, military service-specific risk factors and novel discovered EHR lung cancer risk
phenotypes to develop a lung cancer screening model. The variables for this model will include a rich mosaic
of static and time varying metrics (smoking behavior, lab values, pulmonary function, etc.), lung cancer risk
EHR phenotypes (COPD, HIV, etc.), and service-specific risks (Agent Orange, asbestos, etc.). We will
compare our new model to the existing lung cancer screening guidelines, the Bach, Liverpool Lung Project and
PLCO screening eligibility models. We hypothesize that a Veteran-specific model will identify more at-risk
individuals with greater accuracy and calibration compared to current screening eligibility models.
With nationally recognized leaders in lung cancer, informatics, VA data use, machine learning, epidemiology,
and biostatistics, we are uniquely positioned to accomplish these goals. At the completion of this proposal, a
Veteran-specific model will be developed and compared to existing lung cancer screening eligibility models for
at-risk Veterans.
当前的肺癌筛查资格指南是在平民中制定的,错过了
大多数患有肺癌的退伍军人。指南包括50-80岁的烟民,有20个
或更多的包装历史,他们目前在过去15年内吸烟或退出。仅这些标准
在平民和退伍军人中捕获20-35%的肺癌。此外,退伍军人遭受
比美国其他人口更高的肺癌,吸烟更多,并且具有独特
暴露于已知的肺癌原因,包括橙色,石棉,柴油烟雾,电离辐射
和开放燃烧坑烃。退伍军人还具有肺癌的其他危险因素,例如种族,低
社会经济状况,先前的癌症史,HIV,类风湿关节炎和慢性阻塞性肺
疾病(COPD)每种疾病已证明会增加肺癌的风险。其他,特定于人口
有效地识别可能从筛查中受益但没有这些模型的模型
在退伍军人中得到了验证,没有人考虑退伍军人的独特风险。一个个性化和经验丰富的
增加与服务相关的肺癌风险的模型,并导致识别高风险群体
需要受益于肺癌筛查。该提议的目的是结合一般人群
资深特定的肺癌危险因素进入了老兵的肺癌筛查资格模型。我们的
总体假设是,服务历史和新的危险因素可用于资深特异性的肺癌
风险模型扩大可能从肺癌筛查中受益的人群。这项改进的努力
通过筛查对肺癌的早期发现,退伍军人的健康有两个目标。
在AIM 1中,我们将定义和发现与肺癌增加有关的新表型
包括纵向临床和特定于兵役的退伍军人。我们将生成一个
所有在VA接受护理的退伍军人的全面,纵向的肺癌危险因素
过去十年的设施。我们将使用链接的国防部和VA电子健康记录
(EHR)数据以识别服务相关的暴露和肺癌危险因素。使用人工智能,我们
将从临床注释放射学报告中挖掘非结构化的文本数据以发现新的数据模式
(表型)有助于预测未来的肺癌诊断。我们假设我们将准确确定
当前可用性模型中使用的风险变量,发现一组新型的资深特定表型
与肺癌风险有关。在AIM 2中,我们将建立一个资深特定的肺癌筛查模型
并将其与现有的筛选资格标准和模型进行比较。我们将结合标准
肺癌风险变量,特定于军事服务的风险因素和新颖发现的EHR肺癌风险
开发肺癌筛查模型的表型。该模型的变量将包括丰富的马赛克
静态和时间变化的指标(吸烟行为,实验室值,肺功能等),肺癌风险
EHR表型(COPD,HIV等)和特定服务的风险(Agent Orange,石棉等)。我们将
将我们的新模型与现有的肺癌筛查指南,巴赫,利物浦肺项目和
PLCO筛选资格模型。我们假设一个资深人士特异性模型将确定更多的高风险
与当前的筛选资格模型相比,具有更高准确性和校准的个体。
随着全国认可的肺癌领导者,信息信息,VA数据使用,机器学习,流行病学,
和生物统计学,我们在实现这些目标方面处于独特状态。该提议完成后,
将开发资深特定模型并将其与现有的肺癌筛查资格模型进行比较
高危老兵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric L Grogan其他文献
Eric L Grogan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric L Grogan', 18)}}的其他基金
Regional Variation of FDG-PET Scans to diagnose lung cancer
FDG-PET 扫描诊断肺癌的区域差异
- 批准号:
8505339 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Regional Variation of FDG-PET Scans to diagnose lung cancer
FDG-PET 扫描诊断肺癌的区域差异
- 批准号:
8354746 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Decreasing Unnecessary Invasive Lung Cancer Diagnostic Procedures
减少不必要的侵袭性肺癌诊断程序
- 批准号:
8201844 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似国自然基金
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
制造企业人工智能工作场景下员工AI认同影响机制与员工主动行为内在机理研究
- 批准号:72362025
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于原子贡献与人工智能的萃取精馏溶剂分子设计研究
- 批准号:22308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant