Health equity and the impacts of EHR data bias associated with social determinants
健康公平以及与社会决定因素相关的电子病历数据偏差的影响
基本信息
- 批准号:10584190
- 负责人:
- 金额:$ 35.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Algorithm DesignAlgorithmsAssessment toolAutomobile DrivingCOVID-19 pandemicCardiac healthCaringCharacteristicsClinicalDataData ReportingData SetDevelopmentDisparityDocumentationElectronic Health RecordEnsureEquitable healthcareEquityEthnic OriginFailureFutureGoalsHealthHealth Care CostsHealth systemHealthcareHealthcare ActivityHealthcare SystemsIndividualInequityIngestionInterventionLeadLearningMeasuresMediatorMedicalMethodologyMethodsModelingOutcomePatient CarePatient riskPatient-Focused OutcomesPatientsPatternPerformanceProviderRaceResearchResourcesRiskRisk AssessmentRisk EstimateSecuritySeverity of illnessStructural ModelsTechniquesTestingTimeUnited StatesWorkblack patientclinical decision-makingclinical predictorsclinical riskcommunity based practicedata qualitydemographicsethnic biashealth care availabilityhealth care deliveryhealth care disparityhealth care service utilizationhealth differencehealth equityhealth inequalitiesimprovednovelpatient health informationpatient populationperceived discriminationpoint of carepredict clinical outcomeprediction algorithmpredictive toolsracial biasrisk predictionrisk prediction modelsocial determinantssocial health determinantstool
项目摘要
Project Summary / Abstract
Achieving optimal health in the United States is challenging, in part due to inequities in social determinants of
health (SDoH) like financial security, experiences of discrimination, and healthcare access. These biases may
manifest in the data collected during health care in electronic health records (EHRs) and, in turn, be
propagated in research and healthcare activities that use those data. In other words, real-world data will reflect
real-world biases and inequities. A biased healthcare system will produce biased data. Analyses performed
with biased data will produce biased results. The end result is that without appropriate understanding and
intervention, these biases will perpetuate themselves, ultimately furthering inequity in health and healthcare.
Increasingly, healthcare delivery has become reliant on clinical risk prediction and risk assessment algorithms
that use EHR data to help identify patients who are at-risk, allocate health system resources, and inform
healthcare decisions. Even if these algorithms are designed to be equally valid for all patients, if they are
applied to biased data the results will also be biased. In order to improve equity in health and healthcare, it is
vital that we understand biases in EHR data that are associated with social determinants of health and develop
methods that can ensure that risk prediction algorithms produce valid results for all patients. Therefore, the
objectives of the proposed work are to:
1) Characterize the patterns of bias in EHR data
2) Identify latent and observed factors that drive mechanisms of poor data quality
3) Evaluate the impact of data bias on clinical tasks that rely on EHR data
4) Evaluate structural modeling and debiasing methods to improve analyses conducted with EHR-derived
datasets that contain bias.
We will be working with data from OCHIN, a large community-based practice network, which provided care for
approximately 1.8 million unique patients between 2018 and 2020. First, we will identify associations between
SDoH and EHR data quality. Second, we will evaluate the accuracy of a set of representative clinical risk
prediction and risk assessment algorithms to characterize the relationship between EHR data quality, algorithm
performance, and SDoH. Finally, using structural models and the relationships defined in the first two aims, we
will model the performance of clinical risk prediction and assessment algorithms in the EHR, and we will
examine strategies for incorporating SDoH information to improve their accuracy and support appropriate
clinical decision-making at the point of care.
项目概要/摘要
在美国实现最佳健康状况具有挑战性,部分原因是社会决定因素的不平等
健康 (SDoH),例如财务安全、歧视经历和医疗保健获取。这些偏见可能
体现在电子健康记录 (EHR) 中医疗保健期间收集的数据中,进而被
在使用这些数据的研究和医疗保健活动中传播。换句话说,现实世界的数据将反映
现实世界的偏见和不平等。有偏见的医疗保健系统会产生有偏见的数据。进行的分析
有偏见的数据会产生有偏见的结果。最终的结果是如果没有适当的理解和
如果不进行干预,这些偏见就会长期存在,最终加剧健康和医疗保健方面的不平等。
医疗保健服务越来越依赖于临床风险预测和风险评估算法
使用 EHR 数据帮助识别有风险的患者、分配卫生系统资源并告知
医疗保健决策。即使这些算法被设计为对所有患者同样有效,如果它们是
应用于有偏差的数据,结果也会有偏差。为了提高健康和医疗保健的公平性,
至关重要的是,我们了解与健康和发展的社会决定因素相关的电子病历数据中的偏差
可以确保风险预测算法为所有患者产生有效结果的方法。因此,
拟议工作的目标是:
1) 描述 EHR 数据中的偏差模式
2) 识别导致数据质量差的机制的潜在和观察到的因素
3) 评估数据偏差对依赖 EHR 数据的临床任务的影响
4) 评估结构建模和去偏方法,以改进使用 EHR 衍生的分析
包含偏差的数据集。
我们将使用来自 OCHIN 的数据,OCHIN 是一个大型社区实践网络,为
2018 年至 2020 年间约有 180 万独特患者。首先,我们将确定之间的关联
SDoH 和 EHR 数据质量。其次,我们将评估一组代表性临床风险的准确性
预测和风险评估算法来表征 EHR 数据质量、算法之间的关系
性能和SDoH。最后,使用结构模型和前两个目标中定义的关系,我们
将模拟 EHR 中临床风险预测和评估算法的性能,我们将
检查纳入 SDoH 信息的策略,以提高其准确性并支持适当的
护理点的临床决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Gray Weiskopf其他文献
Nicole Gray Weiskopf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole Gray Weiskopf', 18)}}的其他基金
Identifying and understanding drivers of selection bias and information bias in clinical COVID-19 data
识别和理解临床 COVID-19 数据中选择偏差和信息偏差的驱动因素
- 批准号:
10192372 - 财政年份:2021
- 资助金额:
$ 35.54万 - 项目类别:
Identifying and understanding drivers of selection bias and information bias in clinical COVID-19 data
识别和理解临床 COVID-19 数据中选择偏差和信息偏差的驱动因素
- 批准号:
10380032 - 财政年份:2021
- 资助金额:
$ 35.54万 - 项目类别:
Operationalizing Machine Learning and Discrete Event Simulation Models to Improve Clinic Efficiency
运用机器学习和离散事件模拟模型来提高诊所效率
- 批准号:
10460170 - 财政年份:2020
- 资助金额:
$ 35.54万 - 项目类别:
Operationalizing Machine Learning and Discrete Event Simulation Models to Improve Clinic Efficiency
运用机器学习和离散事件模拟模型来提高诊所效率
- 批准号:
10664923 - 财政年份:2020
- 资助金额:
$ 35.54万 - 项目类别:
Measuring and improving data quality for clinical quality measure reliability
测量和提高临床质量测量可靠性的数据质量
- 批准号:
9761576 - 财政年份:2017
- 资助金额:
$ 35.54万 - 项目类别:
Measuring and improving data quality for clinical quality measure reliability
测量和提高临床质量测量可靠性的数据质量
- 批准号:
9428949 - 财政年份:2017
- 资助金额:
$ 35.54万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 35.54万 - 项目类别:
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
- 批准号:
10603975 - 财政年份:2023
- 资助金额:
$ 35.54万 - 项目类别:
Predicting Cardiovascular Outcomes Using Diabetes-Induced Transcriptomic Networks
使用糖尿病诱导的转录组网络预测心血管结果
- 批准号:
10679593 - 财政年份:2023
- 资助金额:
$ 35.54万 - 项目类别:
Automatic identification of early bone loss patterns from radiographs invisible to human eyes for early periodontal disease diagnosis and prevention
从人眼看不见的射线照片中自动识别早期骨质流失模式,用于早期牙周病的诊断和预防
- 批准号:
10723693 - 财政年份:2023
- 资助金额:
$ 35.54万 - 项目类别: