Ethics Core (FABRIC)
道德核心 (FABRIC)
基本信息
- 批准号:10662376
- 负责人:
- 金额:$ 121.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaArtificial IntelligenceBehavioral ResearchBenefits and RisksBig DataBioethicsBiomedical ResearchBridge to Artificial IntelligenceCatalogsClimactericClinicalCollaborationsCollectionCommunitiesConsentCore AssemblyDataData CollectionData ProtectionData SetDevelopmentEconomicsEnsureEnvironmentEquityEthical IssuesEthicsEuropeanFoundationsFutureGenerationsGuidelinesHealthcareHumanIndividualInformaticsInfrastructureKnowledgeLawsLearningLiteratureMachine LearningMedicineNeeds AssessmentPersonsPrivacyProcessPublic PolicyPublic RelationsRegulationResearchResearch EthicsRightsRunningSocietiesSurveysSustainable DevelopmentTechnologyTimeTrustUnconscious StateVisionWorkWorld Health Organizationadverse outcomeclinical decision-makingcommunity engagementdata managementdecision making algorithmdigital healthdigital tooldistrustexperiencehealth care deliveryhuman centered designimplementation scienceimprovedinterdisciplinary approachlearning communitylegal implicationmultidisciplinaryoutreachpreventprivacy protectionprogramsracial biasresponsescaffoldsocialsuccesssymposiumtechnology developmenttooltrustworthinessusabilitywillingness
项目摘要
Bridge2AI: a FAIR AI BRIDGE Center (FABRIC) Ethics Core Summary
The use of artificial intelligence (AI), and particularly machine learning (ML), in healthcare opens up many
opportunities to improve healthcare and biomedical research. However, AI/ML also raise important issues that
implicate ethics and trust, including defining parameters for consent and re-use of personal data, protecting
privacy, ensuring transparency and engagement with stakeholders about this research, and developing and
deploying tools that are useful and valid for all people. Without an ethically robust set of principles and practices
that are generalizable and reusable in a wide range of biomedical environments, AI/ML could violate personal
rights, widen the gap between fairness and equality, and fan the flames of mistrust, as exemplified by recent
work showing how racial bias can influence clinical decision algorithms. Our vision for the FAIR AI Bridge Center
- Ethics Core (FABRIC-Ethics) is to ensure that AI/ML is developed and applied in an ethical and trustworthy
manner. FABRIC-Ethics will support the Bridge2AI program to become sustainable by making it more ethical
and trustworthy by the end of the four-year project period.
To realize this vision, we will use an iterative and reflective four-step cycle: 1) Scaffold, 2) Assess, 3) Facilitate
and 4) Evaluate and educate, or SAFE, to provide a platform for convening, analyzing and curating, public
relations and original research in a multidisciplinary manner. We will work with the Bridge2AI program to
formulate ethical and trustworthy principles for AI/ML (ETAI) to address existing and future practices in
biomedical AI research and applications. These include the collection and management of data, the development
and deployment of AI/ML technologies and AI/ML applications. In close collaboration with the Bridge2AI program
and its Data Generation Projects (DGPs), we will conduct a closed- and open-ended survey, discuss priorities
and experiences with Bridge2AI DGPs, and develop an open, curated catalog of relevant literature. These efforts
will run in parallel with multiple mechanisms for building a learning ETAI community, convening Bridge2AI data
generation projects to distill best practices, and organizing studio sessions to support contact with the other core
areas of the Bridge2AI Center and the broader community. Our core will further develop a digital health checklist
and framework that prepares Bridge2AI DGPs to evaluate: 1) access and usability, 2) risks and benefits, 3)
privacy and 4) data management. We will work with the Bridge2AI DGPs to share knowledge about ETAI, inform
the development of principles and best practices, and to set up conferences for sustainable development of ETAI
culture beyond Bridge2AI. The team assembled for the core has expertise in a wide range of areas, including
bioethics, digital health research ethics, law, public policy, AI/ML, data protection, informatics, medicine, human-
centered design, implementation science, and community engagement. To ensure success, FABRIC-Ethics will
be led by four PIs with a proven track record in multidisciplinary approaches to the study of ethical issues in
technology, center management, and core support.
Bridge2ai:一个公平的AI桥梁中心(面料)伦理核心总结
在医疗保健中使用人工智能(AI),尤其是机器学习(ML)
改善医疗保健和生物医学研究的机会。但是,AI/ML还提出了重要问题
暗示道德和信任,包括定义同意和重复使用个人数据的参数,保护
隐私,确保与利益相关者有关这项研究,发展和发展的透明度和参与
部署对所有人有用且有效的工具。没有道德上强大的原则和实践
在广泛的生物医学环境中,AI/ML可能会违反个人
权利,扩大公平与平等之间的鸿沟,并驱动不信任的火焰,例如
工作表明种族偏见如何影响临床决策算法。我们对公平AI桥中心的愿景
- 道德核心(织物 - 伦理学)是为了确保在道德和值得信赖的道德上开发和应用AI/ML
方式。织物伦理学将支持Bridge2AI计划,以使其更具道德感来实现可持续性
并在四年期项目结束时值得信赖。
要实现这一愿景,我们将使用迭代和反思性的四步周期:1)脚手架,2)评估,3)促进
4)评估,教育或安全,为召集,分析和策展提供一个平台
关系和原始研究以多学科的方式。我们将与Bridge2ai计划合作
为AI/ML(ETAI)制定道德和值得信赖的原则,以解决现有的和未来的实践
生物医学AI研究和应用。其中包括数据的收集和管理,开发
以及AI/ML技术和AI/ML应用程序的部署。与Bridge2ai计划密切合作
及其数据生成项目(DGP),我们将进行封闭式和开放式调查,讨论优先事项
以及Bridge2AI DGP的经验,并开发了相关文献的开放,精心策划的目录。这些努力
将与建立学习ETAI社区的多种机制并行运行
发电项目以提炼最佳实践,并组织工作室会议,以支持与其他核心的联系
Bridge2ai中心和更广泛的社区的地区。我们的核心将进一步开发数字健康清单
和准备Bridge2AI DGP进行评估的框架:1)访问和可用性,2)风险和福利,3)
隐私和4)数据管理。我们将与Bridge2AI DGP合作,分享有关ETAI的知识,告知
制定原则和最佳实践,并为ETAI的可持续发展开设会议
Bridge2ai以外的文化。为核心组装的团队在各个领域都有专业知识,包括
生物伦理学,数字健康研究伦理,法律,公共政策,AI/ML,数据保护,信息学,医学,人类 -
集中的设计,实施科学和社区参与。为了确保成功,织物伦理学将
由四个PI领导,在多学科方法中具有良好的往绩来研究道德问题
技术,中心管理和核心支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley A. Malin其他文献
Dataset Representativeness and Downstream Task Fairness
数据集代表性和下游任务公平性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victor A. Borza;Andrew Estornell;Chien;Bradley A. Malin;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
APPLICATIONS OF HOMOMORPHIC ENCRYPTION
同态加密的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Archer;Lily Chen;Jung Hee Cheon;Ran Gilad;Roger A. Hallman;Zhicong Huang;Xiaoqian Jiang;R. Kumaresan;Bradley A. Malin;Heidi Sofia;Yongsoo Song;Shuang Wang - 通讯作者:
Shuang Wang
Protecting Genomic Sequence Anonymity with Generalization Lattices
- DOI:
10.1055/s-0038-1634025 - 发表时间:
2005 - 期刊:
- 影响因子:1.7
- 作者:
Bradley A. Malin - 通讯作者:
Bradley A. Malin
Bradley A. Malin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley A. Malin', 18)}}的其他基金
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8695427 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9301793 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9193769 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8548389 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9754854 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9360125 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8915734 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8341447 - 财政年份:2012
- 资助金额:
$ 121.72万 - 项目类别:
Automated Detection of Anomalous Accesses to Electronic Health Records
自动检测电子健康记录的异常访问
- 批准号:
8882547 - 财政年份:2009
- 资助金额:
$ 121.72万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 121.72万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 121.72万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 121.72万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 121.72万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 121.72万 - 项目类别: