HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)

倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)

基本信息

  • 批准号:
    10723292
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

As a result of efforts to reduce healthcare costs and improve quality, patients with heart failure are increasingly receiving treatment in community-based programs, such as managed long-term care programs which support older adults in remaining independent in their community. Managed long-term care aims to reduce unplanned hospitalizations and emergency department (ED) visits, but heart failure is still the leading reason for these avoidable events. In managed long-term care, the care coordinator (i.e., a registered nurse or social worker) maintains regular contact with patients by telephone to ensure that they receive care congruent with their medical needs. From the linguistic perspective, verbal communications between patients and healthcare providers are information-seeking and sharing behaviors, as they include problem-focused communication. From the acoustic perspective, heart failure can affect patients’ voice and speech characteristics due to swelling caused by fluid retention or compression of the laryngeal nerve due to enlarged heart structures. While verbal communication between patients with heart failure and their care coordinators can provide insight into hospitalization and ED risks, it is largely untapped in managed long-term care. To address this gap, we aim to examine whether audio-recorded verbal telephone communication (hereafter called verbal communication) can be utilized to improve risk prediction. In the K99 phase, we will focus on identifying information in verbal communications between patients with heart failure and their care coordinators. We will extract the following potential risk factors for hospitalizations or ED visits from verbal communications: (1) conversational characteristics to analyze interactions in patterns of communication, (2) language phenotypes based on a list of the language of risk factors, including heart failure symptoms, poor self-management, and other hospitalization risks, and (3) acoustic features by analyzing voice signals. In the R00 phase, we will focus on developing risk prediction models for hospitalizations or ED visits for patients with heart failure in managed long-term care. We will develop several machine learning-based risk prediction models for hospitalizations or ED visits using information derived from: a) structured electronic health records, b) care coordination notes, and c) verbal communications between patients with heart failure and their care coordinators (identified during the K99 phase). We will evaluate if the risk prediction performance of machine learning algorithms can be improved by integrating information from different data sources. This proposal is aligned with the Strategic Vision key area of the National Heart, Lung, and Blood Institute (NHLBI), "Leverage emerging opportunities in data science to open new frontiers in heart, lung, blood, and sleep research." This study will be an important step toward achieving my long-term career goal of developing risk prediction models for heart failure patients and implementing them into clinical decision support systems. In particular, the goal is to identify early signs of deterioration by incorporating verbal communication from patients into risk models.
由于降低医疗保健成本和提高质量的努力,心力衰竭的患者越来越多 在社区计划中接受治疗,例如支持的长期护理计划 老年人在社区中保持独立。托管长期护理旨在减少计划外的 住院和急诊科(ED)访问,但心力衰竭仍然是这些的主要原因 可避免的事件。在托管长期护理中,护理协调员(即注册护士或社会工作者) 通过电话与患者保持定期联系,以确保他们获得与他们的一致的照顾 医疗需求。从语言角度来看,患者与医疗保健之间的口头交流 提供者是寻求信息和共享行为,因为它们包括以问题为中心的沟通。 从声学的角度来看,心力衰竭会影响患者的声音和语音特征 由于心脏结构扩大而导致的喉神经的液体保留或压缩引起的肿胀。 心力衰竭与护理协调员之间的口头交流可以提供见解 在住院和ED风险中,在托管长期护理中,它在很大程度上尚未开发。为了解决这个差距,我们 旨在检查音频录制的口头电话通信(以下称为口头电话 沟通)可用于改善风险预测。在K99阶段,我们将专注于确定 心力衰竭与其护理协调员之间的口头通信信息。我们将 从口头通讯中提取以下住院或ED访问的潜在危险因素:(1) 会话特征以分析交流方式中的相互作用,(2)语言表型 基于风险因素语言列表,包括心力衰竭症状,自我管理不良和 通过分析语音信号,其他住院风险和(3)声学特征。在R00阶段,我们将集中精力 在为有托管心力衰竭的患者的住院或ED访问开发风险预测模型时 长期护理。我们将为住院或 使用来自以下信息的信息访问:a)结构化电子健康记录,b)护理协调说明, c)心力衰竭患者与其护理协调员之间的口头交流(在 K99阶段)。我们将评估机器学习算法的风险预测性能是否可以 通过整合来自不同数据源的信息来改进。该建议与战略 民族心脏,肺和血液研究所(NHLBI)的视觉关键领域,“利用新兴的机会 数据科学以打开心脏,肺,血液和睡眠研究的新边界。“这项研究将是一项重要的 迈向实现我的长期职业目标,即为心力衰竭开发风险预测模型 并将它们实施到临床决策支持系统中。特别是,目标是确定 通过将患者的口头交流纳入风险模型来恶化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

基于声学原位测试的金属表面液滴弹跳次数仿生调控
  • 批准号:
    52350039
  • 批准年份:
    2023
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
航天低温推进剂加注系统气液状态声学监测技术研究
  • 批准号:
    62373276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
海洋声学功能材料发展战略研究
  • 批准号:
    52342304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    专项项目

相似海外基金

SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
  • 批准号:
    10590732
    10590732
  • 财政年份:
    2022
  • 资助金额:
    $ 9.92万
    $ 9.92万
  • 项目类别:
Prediction of Alcohol Use Disorder and PTSD After Trauma in Adolescents
青少年创伤后酒精使用障碍和创伤后应激障碍 (PTSD) 的预测
  • 批准号:
    10367692
    10367692
  • 财政年份:
    2022
  • 资助金额:
    $ 9.92万
    $ 9.92万
  • 项目类别:
Prediction of Alcohol Use Disorder and PTSD After Trauma in Adolescents
青少年创伤后酒精使用障碍和创伤后应激障碍 (PTSD) 的预测
  • 批准号:
    10693806
    10693806
  • 财政年份:
    2022
  • 资助金额:
    $ 9.92万
    $ 9.92万
  • 项目类别:
Feelix @ Home: Testing and optimization of a smart stethoscope for home use to monitor changes in lung status of individuals with chronic conditions
Feelix @ Home:测试和优化家用智能听诊器,用于监测慢性病患者肺部状况的变化
  • 批准号:
    9909859
    9909859
  • 财政年份:
    2020
  • 资助金额:
    $ 9.92万
    $ 9.92万
  • 项目类别:
Feelix @ Home: Testing and optimization of a smart stethoscope for home use to monitor changes in lung status of individuals with chronic conditions
Feelix @ Home:测试和优化家用智能听诊器,用于监测慢性病患者肺部状况的变化
  • 批准号:
    10274773
    10274773
  • 财政年份:
    2020
  • 资助金额:
    $ 9.92万
    $ 9.92万
  • 项目类别: