SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
基本信息
- 批准号:10590732
- 负责人:
- 金额:$ 29.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcousticsAddressAffectAirAir MovementsAlveolusAmbulancesAnatomyArchitectureArtificial IntelligenceAuscultationBiological MarkersBlood TestsBreathingCase ManagementCase/Control StudiesCategoriesChestChildhoodClinicClinicalClinical DataCommunitiesComplementComplexConsumptionDevicesDiagnosisDiagnosticEarElementsEngineeringEnvironmentGoalsHandHeadHealthHealth PersonnelHeartHomeHospitalsImageImaging DeviceInflammationInterobserver VariabilityJudgmentLocationLower Respiratory Tract InfectionLungLung infectionsMachine LearningMasksMedicalModalityMonitorMucous body substanceNoiseNursing StaffObstructionOutcomeOxygen saturation measurementPatientsPatternPhysiciansPneumoniaPositioning AttributePublic HealthRadiationResourcesRespiratory DiaphragmRespiratory SoundsRespiratory SystemRespiratory Tract InfectionsRoentgen RaysSchemeSignal TransductionSkinSourceStandardizationStethoscopesTechniquesTechnologyTelemedicineTestingThoracic RadiographyTimeTrainingTravelTriageVisualizationaccurate diagnosisclinical biomarkersclinical diagnosisclinical examinationclinical practicecommunity cliniccostdeep learningdesigndiagnostic valueelectric impedancefield studyfrontierimaging modalityimprovedinnovationinterestinventionlung imagingmedical attentionnew technologynovelpediatric emergencypoint of carerecurrent neural networkrespiratory healthscreeningsensorsoundstandard caretooltransmission processtreatment strategyultrasoundusabilityvirtualwearable device
项目摘要
The stethoscope is a ubiquitous technology used to listen to sounds from the chest in order to assess lung or heart conditions. Despite its universal use, it is considered an unreliable diagnosis tool due to a number of limitations: masking by noise, need for highly trained users and ear to interpret lung sounds and subjectivity in interpreting auscultation sounds. Still, one of the reasons auscultations are a staple of clinical screening is that sound is one the cheapest, fastest and most readily available biomarkers. The simple fact of breathing involves sound traveling through chest cavities that will be affected by presence of obstructions or abnormalities. While the signature of these air flow disruptions may be concealed, the right engineering innovation should not only identify their presence but can be extended as an imaging modality to identify their location, which would be a novel use of breath sounds to image lung cavities. The proposed smart auscultation technology is innovative in three ways: (i) it develops a machine learning architecture that imposes finite-element airway propagation constraints and stochastic variational inference using recurrent neural networks, (ii) a novel piezo-sensing material with tunable acoustic impedance that matches the skin hence eliminating air as transmission medium between the chest and device diaphragm which virtually eliminates pick up of any ambient noise, (iii) an array device that leverages the piezo-sensor to develop an imaging device using passive breathing sounds (instead of radiations or ultrasound probes). The proposed technology is extremely low-cost, deployable under adverse conditions, usable for immediate clinical examination as well as extendable for monitoring as a wearable device. The new technology will be field tested directly in case/control studies at the Johns Hopkins pediatric ER and pulmonary clinics to validate localization accuracy from the auscultation array using physicians’ judgments as gold standard. If successful, this technology will complement alternative, often costly and time-consuming diagnosis schemes (X-rays or ultrasounds which often cost $100-$1000’s) to offer a fast, cheap (few $) and accessible tool that can be widely disseminated from community clinics to hospitals and potentially home-based health monitoring. Given the dire public health need in addressing ALRI challenges, the proposed low-cost and efficient technology can be a game changer as a point-of-care aid to triage cases that require further medical attention.
听诊器是一种无处不在的技术,用于听胸部声音以评估肺部或心脏状况,尽管它被广泛使用,但由于存在许多局限性,它被认为是一种不可靠的诊断工具:噪音掩盖、需要训练有素的人员。尽管如此,听诊成为临床筛查主要内容的原因之一是声音是最便宜、最快和最容易获得的生物标志物之一。呼吸涉及到穿过胸腔的声音,而胸腔会受到障碍物或异常现象的影响,虽然这些气流中断的特征可能被隐藏,但正确的工程创新不仅应该识别它们的存在,而且可以扩展为一种成像方式来识别。所提出的智能听诊技术在三个方面具有创新性:(i)它开发了一种机器学习架构,该架构施加有限元气道传播约束和随机性。使用循环神经网络进行变分推理,(ii) 一种新型压电传感材料,具有与皮肤匹配的可调声阻抗,从而消除了空气作为胸部和设备隔膜之间的传输介质,这实际上消除了任何环境噪声的拾取,(iii)阵列设备,利用压电传感器开发使用被动呼吸声(而不是辐射或超声探头)的成像设备。所提出的技术成本极低,可在不利条件下部署,可立即用于临床。该新技术将在约翰·霍普金斯大学儿科急诊室和肺部诊所的病例/对照研究中直接进行现场测试,以使用医生的判断作为黄金标准来验证听诊阵列的定位准确性。如果成功,该技术将补充通常昂贵且耗时的替代诊断方案(X 射线或超声波,通常花费 100 至 1000 美元),提供一种快速、廉价(几美元)且易于使用的工具,考虑到应对 ALRI 挑战的迫切公共卫生需求,拟议的低成本和高效技术可以作为分诊辅助点改变游戏规则。需要进一步医疗护理的病例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mounya Elhilali其他文献
Mounya Elhilali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mounya Elhilali', 18)}}的其他基金
SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
- 批准号:
10435909 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
CogHear: Cognitive Hearing workshop series
CogHear:认知听力研讨会系列
- 批准号:
10071158 - 财政年份:2020
- 资助金额:
$ 29.28万 - 项目类别:
Multiscale modeling of the cocktail party problem
鸡尾酒会问题的多尺度建模
- 批准号:
9763412 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Multiscale modeling of the cocktail party problem
鸡尾酒会问题的多尺度建模
- 批准号:
10434784 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Multiscale modeling of the cocktail party problem
鸡尾酒会问题的多尺度建模
- 批准号:
10198742 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Smart stethoscope for monitoring and diagnosis of lung diseases
智能听诊器监测和诊断肺部疾病
- 批准号:
9158273 - 财政年份:2016
- 资助金额:
$ 29.28万 - 项目类别:
Cocktail Party Problem: Perspective on Neurobiology of Auditory Scene Analysis
鸡尾酒会问题:听觉场景分析的神经生物学视角
- 批准号:
8477104 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Cocktail Party Problem: Perspective on Neurobiology of Auditory Scene Analysis
鸡尾酒会问题:听觉场景分析的神经生物学视角
- 批准号:
8665851 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Cocktail Party Problem: Perspective on Neurobiology of Auditory Scene Analysis
鸡尾酒会问题:听觉场景分析的神经生物学视角
- 批准号:
8279300 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Prediction of Alcohol Use Disorder and PTSD After Trauma in Adolescents
青少年创伤后酒精使用障碍和创伤后应激障碍 (PTSD) 的预测
- 批准号:
10367692 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
Prediction of Alcohol Use Disorder and PTSD After Trauma in Adolescents
青少年创伤后酒精使用障碍和创伤后应激障碍 (PTSD) 的预测
- 批准号:
10693806 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
Feelix @ Home: Testing and optimization of a smart stethoscope for home use to monitor changes in lung status of individuals with chronic conditions
Feelix @ Home:测试和优化家用智能听诊器,用于监测慢性病患者肺部状况的变化
- 批准号:
9909859 - 财政年份:2020
- 资助金额:
$ 29.28万 - 项目类别:
Feelix @ Home: Testing and optimization of a smart stethoscope for home use to monitor changes in lung status of individuals with chronic conditions
Feelix @ Home:测试和优化家用智能听诊器,用于监测慢性病患者肺部状况的变化
- 批准号:
10274773 - 财政年份:2020
- 资助金额:
$ 29.28万 - 项目类别: