A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
基本信息
- 批准号:8548389
- 负责人:
- 金额:$ 33.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-21 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Access to InformationAddressAdoptedAdoptionAgreementClinicalClinical DataCommitComputersCosts and BenefitsDNA Sequence DatabasesDataData ProtectionData SourcesDatabasesEffectivenessElectronic Health RecordEngineeringEquilibriumEthicsEvaluationEvolutionFoundationsGenomeGenomicsGenotypeGoalsGuidelinesHealth Insurance Portability and Accountability ActHealthcareHuman Genome ProjectHybridsIndividualLabelLegalLiteratureMarketingMeasurementMeasuresMedicineMethodsModelingModificationMotivationNatureOutcomePerceptionPlant RootsPoliciesPolicy MakerPopulationPricePrivacyProtocols documentationProviderRegulationRelative (related person)ResearchResearch Project GrantsResourcesRiskRisk AssessmentRisk ManagementSafetySimulateSolutionsStagingStructureTimeWorkbasecommon rulecomputerized data processingcomputerized toolscostcourtdata sharingdesignfirewallhealth care deliveryimprovedpopulation basedpublic health relevancesocialsoundstatisticstoolusability
项目摘要
DESCRIPTION (provided by applicant): When the Human Genome Project was completed almost ten years ago it cost millions of dollars to sequence an individual's genome. Yet, the evolution of high-throughput sequencing and computational tools has been swift and it will soon be possible to genotype anyone for a nominal price. The ability to generate genomic data coincides with the adoption of electronic health records, setting the stage for large-scale personalized medicine research, the results of which can improve the efficiency, effectiveness, and safety of healthcare delivery. To ease barriers to population-based research, genomic and clinical data are often made available via a de- identified designation by various policies and regulations. However, there is a growing perception that de- identification is a fallacy and that biomedical data can be re-identified with relative ease. This argument, which is partially based on our own studies, forms the core of calls for legislative and regulatory modifications in the literature and court cases. Most notably, a recent Advanced Notice of Proposed Rule Making (ANPRM) inquires if biospecimens, as well as derived genomic data, should be redefined as inherently identifiable. Such labeling would require changes to the Common Rule and HIPAA Privacy Rule and could influence the availability of genomic data for research. It is clear that only a small amount of genomic data is necessary to uniquely distinguish an individual, even in the context of aggregated statistics. However, at the same time, it must be recognized that "distinguishable" is not equivalent to "identifiable" and though re-identification is possible it des not imply it is probable. Identifiability concerns should not be trivialized, but there is currentl no sound basis for reasoning about such risks, limiting the ability to make informed policy decisions. There are many factors associated with identifiability, including the information shared with genomic data (e.g., clinical, demographic), with whom it is shared, what other sources of data exist, and the relevant legal landscape. A limiting factor of prior studies in genomic identifiability is their consideration of these factors in isolation, which provides an incomplete picture. To fill this void, the overarching objective of our research is to engineer a foundation, rooted in ethical, legal, and computational formalisms, that provides a basis for reasoning about, and managing, genomic data identifiability risks. This foundation will be realized through specific aims: (1) build a protocol for modeling the extent to which sharing genomic data can substantiate re-identification concerns, (2) design and evaluate practical measures of genomic identifiability for risk assessment protocols, (3) develop a strategy that supplies options to mitigate genomic data identification risks. We envision several notable outcomes from this project. First, this work will yield guidelines and risk assessment strategies that can be employed by genomic data managers and policy makers to inform their decisions regarding identifiability. Second, we will perform an evaluation of our framework with a real, large de-identified database of clinical and genomic data to provide tangible and pragmatic results.
描述(由申请人提供):大约十年前,人类基因组计划完成时,花费了数百万美元来对个人基因组进行测序。然而,高通量测序和计算工具的发展非常迅速,很快就可以以象征性的价格对任何人进行基因分型。生成基因组数据的能力与电子健康记录的采用相吻合,为大规模个性化医学研究奠定了基础,其结果可以提高医疗保健服务的效率、有效性和安全性。为了消除基于人群的研究的障碍,基因组和临床数据通常通过各种政策和法规的取消标识来提供。然而,越来越多的人认为去识别是一种谬论,生物医学数据可以相对容易地重新识别。这一论点部分基于我们自己的研究,构成了呼吁在文献和法庭案件中修改立法和监管的核心。最值得注意的是,最近的拟议规则制定预先通知 (ANPRM) 询问生物样本以及衍生的基因组数据是否应该被重新定义为本质上可识别的。此类标签需要更改通用规则和 HIPAA 隐私规则,并可能影响研究用基因组数据的可用性。很明显,即使在聚合统计数据的背景下,也只需要少量的基因组数据来唯一区分个体。然而,与此同时,必须认识到“可区分”并不等于“可识别”,尽管重新识别是可能的,但这并不意味着它是可能的。可识别性问题不应被轻视,但目前没有合理的基础来推理此类风险,限制了做出明智政策决策的能力。与可识别性相关的因素有很多,包括与基因组数据共享的信息(例如临床、人口统计)、与谁共享、存在哪些其他数据来源以及相关的法律环境。先前基因组可识别性研究的一个限制因素是他们单独考虑这些因素,这提供了不完整的图片。为了填补这一空白,我们研究的首要目标是建立一个植根于伦理、法律和计算形式主义的基础,为推理和管理基因组数据可识别性风险提供基础。该基础将通过具体目标来实现:(1) 建立一个协议,用于对共享基因组数据可以在多大程度上证实重新识别问题进行建模,(2) 设计和评估风险评估协议的基因组可识别性的实际措施,(3)制定一项策略,提供减轻基因组数据识别风险的选项。我们预计该项目将取得一些显着成果。首先,这项工作将产生指导方针和风险评估策略,可供基因组数据管理者和政策制定者用来为他们有关可识别性的决策提供信息。其次,我们将使用真实的大型临床和基因组数据去识别数据库对我们的框架进行评估,以提供切实、务实的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley A. Malin其他文献
Dataset Representativeness and Downstream Task Fairness
数据集代表性和下游任务公平性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victor A. Borza;Andrew Estornell;Chien;Bradley A. Malin;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
APPLICATIONS OF HOMOMORPHIC ENCRYPTION
同态加密的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Archer;Lily Chen;Jung Hee Cheon;Ran Gilad;Roger A. Hallman;Zhicong Huang;Xiaoqian Jiang;R. Kumaresan;Bradley A. Malin;Heidi Sofia;Yongsoo Song;Shuang Wang - 通讯作者:
Shuang Wang
Protecting Genomic Sequence Anonymity with Generalization Lattices
- DOI:
10.1055/s-0038-1634025 - 发表时间:
2005 - 期刊:
- 影响因子:1.7
- 作者:
Bradley A. Malin - 通讯作者:
Bradley A. Malin
Bradley A. Malin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley A. Malin', 18)}}的其他基金
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8695427 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9301793 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9193769 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9754854 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9360125 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8341447 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8915734 - 财政年份:2012
- 资助金额:
$ 33.43万 - 项目类别:
Automated Detection of Anomalous Accesses to Electronic Health Records
自动检测电子健康记录的异常访问
- 批准号:
8882547 - 财政年份:2009
- 资助金额:
$ 33.43万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Comprehensive Pediatric Phenotyping for Evidence-Based Diagnosis in Genetic Disease
用于遗传病循证诊断的综合儿科表型分析
- 批准号:
10644205 - 财政年份:2023
- 资助金额:
$ 33.43万 - 项目类别:
Developing a Patient Navigation Intervention to Improve Risk Management among Women at High Risk of Breast Cancer
制定患者导航干预措施以改善乳腺癌高危女性的风险管理
- 批准号:
10593675 - 财政年份:2023
- 资助金额:
$ 33.43万 - 项目类别:
CHV-NEO: Community-based digital communication to support neonatal health
CHV-NEO:基于社区的数字通信支持新生儿健康
- 批准号:
10563193 - 财政年份:2021
- 资助金额:
$ 33.43万 - 项目类别:
CHV-NEO: Community-based digital communication to support neonatal health
CHV-NEO:基于社区的数字通信支持新生儿健康
- 批准号:
10393486 - 财政年份:2021
- 资助金额:
$ 33.43万 - 项目类别:
Examining the Longitudinal Influence of the Physical and Social Environments on Social Isolation and Cognitive Health: contextualizing the role of technology
检查物理和社会环境对社会孤立和认知健康的纵向影响:将技术的作用置于情境中
- 批准号:
10291360 - 财政年份:2021
- 资助金额:
$ 33.43万 - 项目类别: