Automatic identification of early bone loss patterns from radiographs invisible to human eyes for early periodontal disease diagnosis and prevention

从人眼看不见的射线照片中自动识别早期骨质流失模式,用于早期牙周病的诊断和预防

基本信息

  • 批准号:
    10723693
  • 负责人:
  • 金额:
    $ 16.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Abstract: Periodontitis is the second most prevalent but preventable dental disease affecting over 64 million Americans and responsible for tooth loss, functionality limitations, pain, and poor quality of life. Thus, early diagnosis and preventive therapeutics are imperative in clinical practice to prevent disease initiation and progression. However, by the time dentists can observe the first bone loss patterns in radiographs to diagnose periodontitis, 30-50% deterioration (periodontal bone damage) has already occurred, which is not visible to human eyes. Clinical decision support systems are designed to identify high-risk periodontitis patients for prevention; however, they are not widely used in clinical practice because of the suboptimal prediction performance and lack of diverse predictive features (early bone loss lesions) for prediction. Therefore, there is an unmet need for a tool that can detect early bone loss patterns invisible to human eyes to alert dentists for early diagnosis and preventive care. Dr. Patel has developed an artificial intelligence (AI) empowered prediction model for periodontitis that utilizes more than 150 distinct variables (e.g., social determinants of health, medical records, lab reports, CDC census data, financial data, etc.) for prediction, which aren't well understood in the existing literature. However, this model lacks dental imaging data such as bone pattern, bone density, pixel intensity, and other imaging predictive features, which have a high potential to improve prediction accuracy. The early bone mineral changes in alveolar bone for early diagnosis have been studied in biological studies; however, the transition of these findings at the chairside is limited. AI and computer vision can bridge this gap and help identify early bone loss patterns from radiographs invisible to human eyes. Therefore, the objective of this project is to develop three automated computer vision algorithms: 1) to improve the extraction of diagnostically meaningful information from periapical radiographs, 2) to determine the extent of bone loss information from radiographs, and 3) build a prediction model to identify early bone loss patterns from radiographs before disease initiation and progression. Enhanced and consistent radiographs will improve diagnostic accuracy & reduce radiographic exposure, automatic bone loss measurement will reduce diagnostic discrepancies, and early bone loss detection will identify high-risk patients to take preventive approaches. The candidate, Dr. Patel's goal is to become an independent PI in dental informatics and develop cutting-edge technologies to generate practice- based evidence (using data-driven methods) to improve patient care and outcomes. A funded K08 proposal will allow Dr. Patel to develop the skills necessary to complete the proposed research (training in computer vision & radiology) and become an independent research scientist (training in didactic mentoring, lecturing, & grantsmanship). Dr. Patel has formed a team of five mentors with expertise in clinical dentistry, computer vision, radiology, and periodontology to provide high-quality, diverse scientific, collegial support and state-of-the-art facilities to ensure the successful completion of this proposed career development goals and research program.
摘要:牙周炎是第二大流行但可预防的牙齿疾病,影响超过6400万 美国人和负责牙齿脱落,功能限制,疼痛和生活质量差的负责。因此,早 诊断和预防性治疗在临床实践中必须进行预防疾病开始和 进展。但是,到牙医可以观察射线照片中的第一个骨质流失模式以诊断 牙周炎,30-50%恶化(牙周骨损伤)已经发生,这对 人眼。临床决策支持系统旨在识别高危牙周炎患者 预防;但是,由于次优预测,它们在临床实践中并未被广泛使用 进行预测的性能和缺乏多种预测特征(早期骨质流失病变)。因此,有 对可以检测到人眼看不见早期骨质流失模式的工具的需求未满足,以提醒牙医 早期诊断和预防保健。帕特尔博士已经开发了人工智能(AI)授权预测 使用150多个不同变量的牙周炎模型(例如,健康的社会决定因素,医疗 记录,实验室报告,CDC人口普查数据,财务数据等)用于预测,这在 现有文献。但是,该模型缺乏牙齿成像数据,例如骨骼模式,骨密度,像素 强度和其他成像预测特征,具有提高预测准确性的高潜力。这 在生物学研究中,已经研究了早期诊断肺泡骨的早期骨矿物质变化。然而, 这些发现在椅子方面的过渡是有限的。 AI和计算机视觉可以弥合这一差距并提供帮助 从人眼看不见的X光片中确定早期的骨质流失模式。因此,该项目的目的 是开发三种自动化计算机视觉算法:1)改善诊断的提取 来自根尖的X光片的有意义的信息,2)确定来自骨质流失信息的程度 X光片和3)建立一个预测模型,以确定疾病前X光片的早期骨质流失模式 启动和进展。增强和一致的X光片将提高诊断精度并降低 放射线照相暴露,自动骨质损失测量将减少诊断差异和早期骨骼 损失检测将确定高危患者采用预防方法。候选人,帕特尔博士的目标是 成为牙科信息学领域的独立PI,并开发尖端技术来产生实践 - 基于证据(使用数据驱动方法)来改善患者护理和结果。资助的K08提案将 允许Patel博士发展完成拟议研究所需的技能(计算机视觉培训和 放射学)并成为一名独立的研究科学家(培训教学指导,讲课和 授予技巧)。帕特尔博士组成了一个由五名导师组成的团队,在临床牙科,计算机视觉, 放射学和牙周病学提供高质量,多样化的科学,大学支持和最先进的 确保成功完成此拟议的职业发展目标和研究计划的设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Patel其他文献

Jay Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
  • 批准号:
    10667885
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
Leveraging genetic and electronic health records data to identify novel targets and drugs for treating alcohol
利用遗传和电子健康记录数据来确定治疗酒精的新靶点和药物
  • 批准号:
    10888495
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
  • 批准号:
    10644648
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
  • 批准号:
    10645844
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了