Predicting Cardiovascular Outcomes Using Diabetes-Induced Transcriptomic Networks
使用糖尿病诱导的转录组网络预测心血管结果
基本信息
- 批准号:10679593
- 负责人:
- 金额:$ 4.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAtherosclerosisBiologicalBiologyBlood GlucoseCardiovascular DiseasesCardiovascular systemCholesterolChronicChronic DiseaseClinicalClinical DataComputer ModelsConnecticutDataData SetDiabetes MellitusDiseaseDisease OutcomeEnvironmentEquationEventFoam CellsFutureGenesGeneticGenetic TranscriptionGoalsImmunologicsIndividualInflammationInflammatoryInterventionKnowledgeLeukocytesLipidsMetabolic DiseasesModelingModernizationMolecular ProfilingNCOR2 geneNoiseNon-Insulin-Dependent Diabetes MellitusOutcomeOutputPathogenesisPathogenicityPathologyPathway AnalysisPathway interactionsPatientsPerformancePersonsPhysiciansPlayProteinsPublicationsRiskRisk AssessmentRisk FactorsRoleSNW1 GeneSamplingScientistSki-interacting proteinTestingTrainingUniversitiesVirulence Factorsblood glucose regulationcardiovascular disorder riskcardiovascular risk factorcareerclinical predictive modelcohortdesigndifferential expressionefficacy evaluationfeature selectionfollow-upgene networkgenetic signatureglycemic controlhigh riskimprovedinnovationmachine learning algorithmmedical schoolsmodel developmentmonocytemulti-ethnicnext generationnon-diabeticnovelpredict clinical outcomepredictive modelingpreventskillsstandard of caresupervised learningtooltranscriptomics
项目摘要
ABSTRACT
Type 2 diabetes mellitus (T2DM) is an increasingly prevalent chronic disease that affects more than 400 million
people worldwide. One of the major complications of T2DM is exacerbated atherosclerotic cardiovascular
disease (CVD). Even when modern lipid and glucose control strategies are applied, T2DM is associated with a
two- to four-fold increase in CVD risk, suggesting the effect of additional pathologies, such as inflammation.
However, current tools to predict CVD outcomes for T2DM patients incorporate only clinical and demographic
variables into their models, and they thus attain only a moderate ability to discriminate the highest-risk patients
in need of targeted clinical intervention. Our lab recently discovered that monocyte-derived foam cells, which
are well-known to play a central role in atherosclerotic CVD, can undergo both homeostatic (non-inflammatory)
and pathogenic (inflammatory) foaming. Using a transcriptomic signature from pathogenic foam cells, our lab
developed a CVD prediction model called CR30 which outperformed existing tools. To address the critical
knowledge gap of identifying CVD risk specifically in T2DM patients, I analyzed monocyte transcriptomic data
from the Multi-Ethnic Study on Atherosclerosis (MESA). From this preliminary analysis, I identified a
transcriptomic signature unique to T2DM patients with CVD, containing a super-network downstream of the co-
regulator proteins SNW1, NCOR2, and CITED2. We hypothesize that this transcriptomic super-network
represents a unique molecular signature which can be used to improve prediction of atherosclerotic
cardiovascular events in individuals with T2DM. In this proposal, I will test this hypothesis by applying two
different strategies to develop predictive models. In Aim 1, I will apply supervised machine learning
approaches to select a set of genes from my preliminary analysis which are predictive of T2DM-CVD
outcomes. I will then test several modeling strategies in training and building a T2DM-CVD prediction model
incorporating this gene set combined with clinical data. In Aim 2, I will use another approach to incorporate
T2DM-CVD molecular signature into modeling by focusing on the transcriptomic super-network. I will generate
enrichment scores for the super-network, then incorporate the scores as variables into model development.
The long-term goal of this project is to identify biological risk factors for CVD in patients with T2DM. The
anticipated impacts are the identification of novel targets for mechanistic studies and the advancement of
biology-informed approaches to clinical outcomes prediction. The training goals of this proposal will provide
me with biologically-informed quantitative skills. This interdisciplinary, highly translational project will leverage
the innovative environment and unique opportunities in the sponsor’s lab and the University of Connecticut
School of Medicine. The expected outcomes from this project will promote my career goals of becoming a
next-generation physician-scientist capable of integrating biological knowledge and quantitative skills to solve
clinical problems for patients with chronic disease.
抽象的
2 型糖尿病 (T2DM) 是一种日益流行的慢性疾病,影响超过 4 亿人
T2DM 的主要并发症之一是加剧动脉粥样硬化性心血管疾病。
即使应用现代血脂和血糖控制策略,T2DM 仍与以下疾病相关:
CVD 风险增加两到四倍,表明炎症等其他病理的影响。
然而,目前预测 T2DM 患者 CVD 结果的工具仅包含临床和人口统计数据
变量进入他们的模型,因此他们只能获得中等程度的能力来区分最高风险的患者
我们的实验室最近发现单核细胞衍生的泡沫细胞,它需要有针对性的临床干预。
众所周知,它们在动脉粥样硬化 CVD 中发挥着核心作用,可以实现稳态(非炎症)
我们的实验室利用致病性泡沫细胞的转录组学特征。
开发了一种名为 CR30 的 CVD 预测模型,其性能优于现有工具,可以解决关键问题。
由于识别 T2DM 患者 CVD 风险的知识差距,我分析了单核细胞转录组数据
从多种族动脉粥样硬化研究 (MESA) 中,我确定了一项初步分析。
患有 CVD 的 T2DM 患者特有的转录组特征,包含共转录组下游的超级网络
我们利用了这个转录组超级网络。
代表了独特的分子特征,可用于改善动脉粥样硬化的预测
T2DM 患者的心血管事件 在本提案中,我将通过应用两个来检验这一假设。
在目标 1 中,我将应用监督机器学习。
从我的初步分析中选择一组可预测 T2DM-CVD 的基因的方法
然后,我将测试训练和构建 T2DM-CVD 预测模型的几种建模策略。
在目标 2 中,我将使用另一种方法来合并该基因集和临床数据。
通过关注我将生成的转录组超级网络,将 T2DM-CVD 分子特征纳入建模。
超级网络的丰富分数,然后将分数作为变量纳入模型开发中。
该项目的长期目标是确定 T2DM 患者 CVD 的生物学危险因素。
预期的影响是确定机械研究的新目标和推进
该提案的培训目标将提供基于生物学的临床结果预测方法。
这个跨学科、高度转化的项目将利用我的生物学定量技能。
赞助商实验室和康涅狄格大学的创新环境和独特机会
该项目的预期成果将促进我成为一名医学院的职业目标。
能够整合生物学知识和定量技能来解决问题的下一代医师科学家
慢性病患者的临床问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keaton Karlinsey其他文献
Keaton Karlinsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别: