Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
基本信息
- 批准号:10578814
- 负责人:
- 金额:$ 55.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAlgorithmsAnatomyBirthBrainCell ProliferationCell physiologyClassificationClinical TrialsCognitiveCompensationComplexCongenital DisordersDataData SetDevelopmentFetal DevelopmentFetusGestational AgeHeadHealth Care CostsHigh PrevalenceHumanHuman DevelopmentHypoxiaImageImaging technologyInjuryInvestigationLifeLive BirthMagnetic Resonance ImagingManualsMeasuresMental HealthModelingMorphologic artifactsMothersMotionMulticenter StudiesNeurodevelopmental DisorderNeurologyNeuronsNeurosciencesNoiseOutcomePatient-Focused OutcomesPatientsPlayPositioning AttributeProcessPropertyReal-Time SystemsRelaxationReproducibilityResearchResolutionRoleRotationSamplingScanningSecond Pregnancy TrimesterSignal TransductionSiteSliceSpeedSystemSystems IntegrationTechniquesTechnologyTestingTherapeutic InterventionTimeTissuesTrainingTranslatingUterusabsorptionbrain tissuecognitive disabilitycongenital heart disorderconvolutional neural networkcost effectivedeep learningdeep learning modeldensitydisabilityeffective therapyfetalfetus at riskimage processingimage reconstructionimprovedin vivoin vivo imaginginnovationlarge datasetsmigrationmyelinationnervous system disorderneurodevelopmentneuroimagingnew technologynext generationnovelprenatalprospectivereal-time imagesreconstructionrecurrent neural networksuccessvirtual
项目摘要
Next-Generation In-Vivo Fetal Neuroimaging
The overall objective of this project is to dramatically improve fetal magnetic resonance imaging (MRI) to
advance research in early human brain development and neurodevelopmental disorders, the burden of which
is, unfortunately, high because of their life-long impact and high prevalence. Fetal MRI has been the technique
of choice in studying prenatal brain development. Fetal motion, however, makes MRI slice acquisition
unreliable at best, as the fetus frequently moves while the prescribed slices are imaged. Uncompensated fetal
motion disrupts 3D coverage of the anatomy and reduces the spatial resolution of slice-to-volume
reconstructions. Repeating the scans does not ensure full 3D coverage of the anatomy, but increases total
acquisition time. This, in turn, dramatically reduces the success rate and reliability of fetal MRI in studying the
development of transient fetal brain compartments that are selectively sensitive to injury over the course of
fetal development. To mitigate these issues and improve fetal MRI, we propose to automatically measure
fetal brain position and prospectively navigate slices to each new position in real-time. The impact of this
approach will be to dramatically increase the success rate and spatial resolution of fetal MRI for the in-vivo
investigation of developing brain compartments, while, in parallel, reducing scan time, effectively making fetal
MRI less burdensome for the mother, more accurate, and cost effective. By eliminating the manual re-
adjustment of stack-of-slice positions, the time that elapses between scans will be virtually continuous. Our
proposed technique will also make fetal MRI less operator-dependent and thus, more reproducible across
sites, which is essential to conducting multi-center studies and clinical trials. Prospective navigation of fetal
MRI slices to compensate for motion requires the development of novel, real-time image processing algorithms
to recognize the fetal brain and its position and orientation; to track fetal motion to steer slices; and to detect
and re-acquire motion corrupted slices. In this project, we will develop innovative deep learning models to
process fetal MRI slices in real-time; will translate those models into an integrated system to prospectively
navigate fetal MRI slices; and will validate the system on fetuses scanned at various gestational ages. To
assess the utility and impact of the proposed technology, we will measure subplate volume in fetuses. The four
specific aims of this study are to 1) assess fetal MRI via variable density image acquisition and reconstruction;
2) achieve real-time recognition of the fetal brain in MRI slices; 3) develop a system of real-time fetal head
motion tracking and steering of slices; and 4) measure the subplate volume in the developing fetal brain using
MRI. These aims will collectively translate and validate new imaging and image processing techniques to
advance fetal MRI, and effectively eliminate a critical barrier to making progress in the fields of developmental
neurology and neuroscience.
下一代体内胎儿神经影像学
该项目的总体目的是显着改善胎儿磁共振成像(MRI)
对早期人脑发育和神经发育障碍的提前研究,其负担
不幸的是,由于其终身影响和高度流行,因此很高。胎儿MRI一直是技术
研究产前脑发育的选择。但是,胎儿运动使MRI切片获取
充其量是不可靠的,因为胎儿在成像时经常移动。未补偿的胎儿
运动破坏了解剖学的3D覆盖范围,并减少了切片到体积的空间分辨率
重建。重复扫描不能确保解剖结构的全3D覆盖范围,但会增加总数
获取时间。反过来,这大大降低了胎儿MRI的成功率和可靠性
在整个过程中选择性敏感的瞬态胎儿脑室的发展
胎儿发育。为了减轻这些问题并改善胎儿MRI,我们建议自动测量
胎儿大脑位置并前瞻性地导航切片到每个新位置。这个影响
方法将大大提高胎儿MRI的成功率和空间分辨率
研究开发脑部室的研究,而同时还会减少扫描时间,有效地制作胎儿
MRI对母亲的负担减轻了,更准确且具有成本效益。通过消除手册的重新
调整堆叠式位置的位置,扫描之间的时间几乎是连续的。我们的
拟议的技术还将使胎儿MRI依赖性依赖性较少,因此在整个方面更可重复
站点,这对于进行多中心研究和临床试验至关重要。胎儿的预期导航
MRI切片以补偿运动需要开发新颖的实时图像处理算法
认识胎儿大脑及其位置和取向;跟踪胎儿运动以转向切片;并检测
并重新接触动作破坏了切片。在这个项目中,我们将开发创新的深度学习模型
实时处理胎儿MRI切片;将这些模型转化为一个集成系统
导航胎儿MRI片;并将验证系统在各种胎龄扫描的胎儿。到
评估所提出的技术的效用和影响,我们将测量胎儿中的子板量。四个
这项研究的具体目的是1)通过可变密度的图像采集和重建来评估胎儿MRI;
2)在MRI切片中实现对胎儿大脑的实时识别; 3)开发一个实时胎儿头系统
切片的运动跟踪和转向; 4)使用使用
MRI。这些目标将集体翻译和验证新的成像和图像处理技术
提前胎儿MRI,并有效消除在发展领域取得进展的关键障碍
神经学和神经科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI GHOLIPOUR-BABOLI其他文献
ALI GHOLIPOUR-BABOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI GHOLIPOUR-BABOLI', 18)}}的其他基金
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10503458 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10684840 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10580011 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10345136 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10552663 - 财政年份:2019
- 资助金额:
$ 55.62万 - 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10332741 - 财政年份:2019
- 资助金额:
$ 55.62万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
9284277 - 财政年份:2014
- 资助金额:
$ 55.62万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
8764291 - 财政年份:2014
- 资助金额:
$ 55.62万 - 项目类别:
相似国自然基金
考虑水平、垂直加速度影响的地震滑坡危险性快速评价方法研究
- 批准号:42307269
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
剪切场下熔体真实流动状态调控及其对结晶影响的研究
- 批准号:51803192
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
射电源结构效应对太阳系质心加速度估计的影响
- 批准号:11603060
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
强震动观测台站建筑物对强地面运动的影响及其处理方法研究
- 批准号:51608098
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
封装效应对微加速度计稳定性影响的基础问题研究
- 批准号:U1530132
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:联合基金项目
相似海外基金
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别: