Motion-robust super-resolution diffusion weighted MRI of early brain development

早期大脑发育的运动稳健超分辨率扩散加权 MRI

基本信息

  • 批准号:
    9284277
  • 负责人:
  • 金额:
    $ 39.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Motion-robust super-resolution diffusion weighted MRI of early brain development The overall objective of this research is to dramatically improve technology and knowledge for in-vivo analysis of normal and abnormal white matter structure and neural connectivity before and early after birth when the brain undergoes its most rapid formative growth. Diffusion-weighted magnetic resonance imaging (DW-MRI or DWI) is considered one of the most promising tools for in-vivo analysis of neural structure; however, our ability to image the fetal and neonatal brain with this technique is constrained by several limitations; including subject motion, limited spatial resolution, and geometric distortion. There s a critical need for motion-robust high- resolution DWI imaging of fetuses and neonates. Due to the lack of such imaging technology, our understanding of early brain growth and the most commonly seen neurodevelopmental abnormalities is largely limited to insights from postmortem (in-vitro) studies. This project aims to fill these gaps through the development of an innovative, motion-robust, super-resolution, C. This involves the development and evaluation of a novel approach, built upon the physics of MRI and advanced image processing techniques, which corrects motion and reconstructs high-resolution DWI data to delineate the neural microstructure of the small fetal and neonatal brain. The two specific aims of this project target 1) moving subjects (aiming at improving neonatal DWI), and 2) fetuses, respectively; and aim at achieving high- resolution fractional anisotropy maps as well as single tensor and multi-tensor models of the neural fiber bundles in the developing brain despite subject movements. This contribution is important because it 1) enables in-vivo high-resolution mapping of the neural connectivity in fetal brain despite intermittent fetal and maternal motion, 2) significantly simpliies research MRI of neonates and preterm infants through a motion- robust imaging protocol that compensates for small head movements, 3) reduces the need for sedation and anesthesia in clinical MRI of neonates and non-cooperative patients, and 4) simultaneously corrects for motion and increases the spatial resolution of DWI, thus leads to dramatic improvements in the analysis of neural structure and connectivity in early brain development. Because the brain is incapable of self-repair and regeneration, interventions at early stages of brain growth are crucial. The development of neural rescue interventions, such as brain hypothermia, an intervention that has been shown to reduce brain damage due to birth asphyxia, is highly dependent upon accurate in-vivo analysis. Likewise, the evaluation of disruption or delay in neural development (due to premature birth or congenital anomalies) relies heavily on precise in-vivo analysis. The in-vivo analysis of early brain development proposed under this application is crucial to executing these research objectives.
描述(由申请人提供):运动的超分辨率扩散加权MRI早期大脑发育的总体目标是该研究的总体目标是显着改善技术和知识,以分析出生前和早期出生前和早期大脑经历最快形成性增长的正常和异常的白色物质结构和神经连接性的体内分析。扩散加权磁共振成像(DW-MRI或DWI)被认为是对神经结构的体内分析的最有希望的工具之一。但是,我们用这种技术对胎儿和新生儿大脑进行成像的能力受到了几个局限性的限制。包括受试者运动,有限的空间分辨率和几何变形。对胎儿和新生儿的运动型高分辨率DWI成像的迫切需要。由于缺乏这种成像技术,我们对早期大脑生长和最常见的神经发育异常的理解在很大程度上仅限于验尸(维特罗)研究的见解。该项目旨在通过开发创新的,运动的,超分辨率,C。这涉及对新方法的开发和评估,建立在MRI和高级图像处理技术的物理基础上,该技术纠正了运动并重建高分​​辨率DWI数据,以划定小胎儿和NeonAnatal脑和NeonAnatal脑的神经微观结构。该项目目标的两个具体目标1)分别移动受试者(旨在改善新生儿DWI),以及2)胎儿;旨在实现高分辨率分数各向异性图,以及尽管受试者运动,但发育中大脑中神经纤维束的单张量和多张量模型。这项贡献很重要,因为它1)尽管胎儿间歇性和孕产妇运动,胎儿大脑中神经连接性的高分辨率映射,2)显着简化了通过运动 - 强大的成像协议对新生儿和早产者的MRI进行MRI研究,该方案​​可补偿小型头部运动和不适合镇静剂和不合时宜的患者,3)同时纠正运动并增加了DWI的空间分辨率,从而导致对早期大脑发育中神经结构和连通性的分析显着改善。由于大脑无法自我修复和再生,因此在大脑生长的早期阶段进行干预至关重要。神经救援干预措施的发展,例如脑体温过低,这种干预措施已被证明会减少由于窒息而导致的脑损伤,这高度依赖于准确的体内分析。同样,评估神经发育的破坏或延迟(由于早产或先天性异常)在很大程度上取决于精确的体内分析。对本应用中提出的早期大脑发展的体内分析对于执行这些研究目标至关重要。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging.
  • DOI:
    10.1016/j.media.2021.102129
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Karimi D;Vasung L;Jaimes C;Machado-Rivas F;Khan S;Warfield SK;Gholipour A
  • 通讯作者:
    Gholipour A
Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration.
  • DOI:
    10.1109/tmi.2018.2866442
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Mohseni Salehi SS;Khan S;Erdogmus D;Gholipour A
  • 通讯作者:
    Gholipour A
Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.
  • DOI:
    10.1109/tmi.2017.2721362
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Mohseni Salehi SS;Erdogmus D;Gholipour A
  • 通讯作者:
    Gholipour A
Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations.
  • DOI:
    10.1016/j.artmed.2021.102078
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Karimi D;Warfield SK;Gholipour A
  • 通讯作者:
    Gholipour A
Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging.
  • DOI:
    10.1109/tmi.2020.2998600
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Singh A;Salehi SSM;Gholipour A
  • 通讯作者:
    Gholipour A
共 5 条
  • 1
前往

ALI GHOLIPOUR-BAB...的其他基金

Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10503458
    10503458
  • 财政年份:
    2022
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10684840
    10684840
  • 财政年份:
    2022
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10580011
    10580011
  • 财政年份:
    2022
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10345136
    10345136
  • 财政年份:
    2022
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10578814
    10578814
  • 财政年份:
    2021
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10428634
    10428634
  • 财政年份:
    2021
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10280126
    10280126
  • 财政年份:
    2021
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
  • 批准号:
    10552663
    10552663
  • 财政年份:
    2019
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
  • 批准号:
    10332741
    10332741
  • 财政年份:
    2019
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
  • 批准号:
    8764291
    8764291
  • 财政年份:
    2014
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
NURBS参数化的自交理论与算法研究
  • 批准号:
    12301490
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分组密码算法后门的研究
  • 批准号:
    62302293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时序深度可加网络的算法与学习理论研究
  • 批准号:
    62306338
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
  • 批准号:
    10696658
    10696658
  • 财政年份:
    2023
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
  • 批准号:
    10689663
    10689663
  • 财政年份:
    2022
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
  • 批准号:
    10349621
    10349621
  • 财政年份:
    2022
  • 资助金额:
    $ 39.83万
    $ 39.83万
  • 项目类别: