Imaging early development of human neural circuits
人类神经回路早期发育的成像
基本信息
- 批准号:10684840
- 负责人:
- 金额:$ 44.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAdultAffectAlgorithmsAnatomyAtlasesBackBasal GangliaBirthBrainBrain Hypoxia-IschemiaBrain imagingChildCirculationCognitive deficitsCommon VentricleCommunicationCompensationCongenital DisordersDataDevelopmentDevelopmental Delay DisordersDiseaseDropoutEarly treatmentEnsureFetal DevelopmentFetusFunctional Magnetic Resonance ImagingGoalsHeadHeart DiseasesHumanHypoxiaImageImaging technologyImpairmentInfantKnowledgeLeadLifeMagnetic Resonance ImagingMental disordersMethodsMotionNeurodevelopmental DisorderNeurologyNeuronsNeurosciencesOrganOutcomePatientsPregnancyPrevention strategyProcessReference StandardsReportingResearchResourcesSample SizeSamplingScanningSchool-Age PopulationSecond Pregnancy TrimesterSeriesSignal TransductionSingle ventricle congenital heart diseaseSliceStructureTechniquesTechnologyTestingTherapeutic InterventionTimeWorkanalysis pipelinecohortcongenital brain disordercongenital heart disorderfetalfunctional MRI scanhigh riskimage processingimprovedin uteroin vivoindependent component analysisinnovationinnovative technologiesmigrationneuralneural circuitneurodevelopmentprenatalprospectivereal-time imagesreconstructionsuccesssynaptogenesistemporal measurementtool
项目摘要
Imaging early development of human neural circuits
The overall objective of this research is to create new imaging technology that dramatically improves our
ability to analyze the development of brain function and functional networks before birth. Functional
magnetic resonance imaging (fMRI) provides a unique capability to study neural circuits and brain
functional connections in-vivo. Fetal fMRI acquisition and analysis, however, has been hampered by
three important challenges: 1) fetal motion disrupts the spatial and temporal continuity of the MRI signal,
2) geometric distortion is exacerbated by the motion of fetal and maternal organs, and 3) the anatomy
and function of the developing fetal brain is distinctly different from those of young children and adults,
thus current processing pipelines and atlases are inadequate for reliable fetal fMRI analysis. To address
these challenges, we pursue three specific aims in this study, that are focused on 1) developing a
prospectively motion navigated fetal fMRI acquisition technology, based on fast real-time image
processing, that compensates for the fetal head motion and geometric distortions during acquisitions; 2)
developing a post-acquisition processing technique that reconstructs an fMRI time series from motion-
corrected fetal fMRI data that are scattered in space and time because of motion and motion correction;
and 3) assessing the utility of fetal fMRI and the developed technologies to evaluate early development
of neural circuits and brain function in fetuses with congenital heart disease compared to healthy fetuses.
This contribution is important because it 1) mitigates a critical barrier to making progress in the field of
developmental neurology and neuroscience by allowing reliable use of fetal fMRI in studying normal vs.
abnormal development of the brain function; 2) improves the efficiency and efficacy of fetal fMRI through
prospectively adjusting scans to compensate for motion and geometric distortions, thus strengthens our
ability to study large cohorts; 3) provides tools and resources, including atlas-based parcellation and a
processing pipeline for the analysis of fetal fMRI; and 4) generates important knowledge about the
origins of disrupted neural development due to hypoxia ischemia in congenital heart disease. The
technology, resources, and knowledge developed in this study have a broad impact and are crucial for
advanced studies in developmental neuroscience and neurology, aiming to elucidate the potentially
devastating effects of adverse early life conditions including congenital disorders of the brain and heart. It
is hoped that these studies lead to improved understanding of the underlying causes of
neurodevelopmental disorders, leading to preventive strategies, therapies, and in some cases, cure.
成像人类神经回路的早期发展
这项研究的总体目标是创建新的成像技术,从而极大地改善我们的
能够在出生前分析大脑功能和功能网络的发展。功能
磁共振成像(fMRI)提供了研究神经回路和大脑的独特能力
功能连接体内。然而,胎儿功能磁共振成像的获取和分析受到
三个重要挑战:1)胎儿运动破坏了MRI信号的空间和时间连续性,
2)胎儿和母体器官的运动加剧了几何变形,3)解剖学
发育中的胎儿大脑的功能与幼儿和成人的功能明显不同,
因此,当前的处理管道和地图集不足以进行可靠的胎儿fMRI分析。解决
这些挑战是在这项研究中追求的三个具体目标,这些目标重点是1)
基于快速实时图像,前瞻性运动导航胎儿fMRI获取技术
处理,可以补偿采集期间胎儿头运动和几何变形; 2)
开发收购后处理技术,该技术从Motion-重建fMRI时间序列
由于运动和运动校正,校正的胎儿FMRI数据散布在空间和时间上;
3)评估胎儿fMRI的效用和开发的技术来评估早期发展
与健康的胎儿相比,先天性心脏病的胎儿中神经回路和大脑功能。
这项贡献很重要,因为它1)减轻在领域取得进展的关键障碍
发育神经病学和神经科学通过可靠地使用胎儿fMRI来研究正常V。
大脑功能的异常发展; 2)通过
前瞻性调整扫描以补偿运动和几何变形,从而增强了我们的
能够学习大型队列的能力; 3)提供工具和资源,包括基于ATLA的拟释和
处理管道以分析胎儿fMRI; 4)产生有关
先天性心脏病缺血引起的神经发育中断的起源。这
这项研究中开发的技术,资源和知识具有广泛的影响,对
发育神经科学和神经病学的高级研究,旨在阐明潜在的
不良早期生活状况的毁灭性影响,包括大脑和心脏的先天性疾病。它
希望这些研究能够改善对
神经发育障碍,导致预防策略,疗法以及在某些情况下治愈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI GHOLIPOUR-BABOLI其他文献
ALI GHOLIPOUR-BABOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI GHOLIPOUR-BABOLI', 18)}}的其他基金
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10503458 - 财政年份:2022
- 资助金额:
$ 44.92万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10580011 - 财政年份:2022
- 资助金额:
$ 44.92万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10345136 - 财政年份:2022
- 资助金额:
$ 44.92万 - 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10552663 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10332741 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
9284277 - 财政年份:2014
- 资助金额:
$ 44.92万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
8764291 - 财政年份:2014
- 资助金额:
$ 44.92万 - 项目类别:
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
- 批准号:82371557
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 44.92万 - 项目类别:
HealthyU-Latinx: A Technology-based Tool for addressing Health Literacy in Latinx Secondary Students and their Families
HealthyU-Latinx:一种基于技术的工具,用于提高拉丁裔中学生及其家庭的健康素养
- 批准号:
10699830 - 财政年份:2023
- 资助金额:
$ 44.92万 - 项目类别: