Motion-robust super-resolution diffusion weighted MRI of early brain development

早期大脑发育的运动稳健超分辨率扩散加权 MRI

基本信息

  • 批准号:
    8764291
  • 负责人:
  • 金额:
    $ 38.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Motion-robust super-resolution diffusion weighted MRI of early brain development The overall objective of this research is to dramatically improve technology and knowledge for in-vivo analysis of normal and abnormal white matter structure and neural connectivity before and early after birth when the brain undergoes its most rapid formative growth. Diffusion-weighted magnetic resonance imaging (DW-MRI or DWI) is considered one of the most promising tools for in-vivo analysis of neural structure; however, our ability to image the fetal and neonatal brain with this technique is constrained by several limitations; including subject motion, limited spatial resolution, and geometric distortion. There s a critical need for motion-robust high- resolution DWI imaging of fetuses and neonates. Due to the lack of such imaging technology, our understanding of early brain growth and the most commonly seen neurodevelopmental abnormalities is largely limited to insights from postmortem (in-vitro) studies. This project aims to fill these gaps through the development of an innovative, motion-robust, super-resolution, C. This involves the development and evaluation of a novel approach, built upon the physics of MRI and advanced image processing techniques, which corrects motion and reconstructs high-resolution DWI data to delineate the neural microstructure of the small fetal and neonatal brain. The two specific aims of this project target 1) moving subjects (aiming at improving neonatal DWI), and 2) fetuses, respectively; and aim at achieving high- resolution fractional anisotropy maps as well as single tensor and multi-tensor models of the neural fiber bundles in the developing brain despite subject movements. This contribution is important because it 1) enables in-vivo high-resolution mapping of the neural connectivity in fetal brain despite intermittent fetal and maternal motion, 2) significantly simpliies research MRI of neonates and preterm infants through a motion- robust imaging protocol that compensates for small head movements, 3) reduces the need for sedation and anesthesia in clinical MRI of neonates and non-cooperative patients, and 4) simultaneously corrects for motion and increases the spatial resolution of DWI, thus leads to dramatic improvements in the analysis of neural structure and connectivity in early brain development. Because the brain is incapable of self-repair and regeneration, interventions at early stages of brain growth are crucial. The development of neural rescue interventions, such as brain hypothermia, an intervention that has been shown to reduce brain damage due to birth asphyxia, is highly dependent upon accurate in-vivo analysis. Likewise, the evaluation of disruption or delay in neural development (due to premature birth or congenital anomalies) relies heavily on precise in-vivo analysis. The in-vivo analysis of early brain development proposed under this application is crucial to executing these research objectives.
描述(由申请人提供):早期大脑发育的运动稳健超分辨率扩散加权 MRI 这项研究的总体目标是显着改进正常和异常白质结构以及神经连接之前和之前的体内分析技术和知识。出生后早期,大脑经历最快速的形成生长。扩散加权磁共振成像(DW-MRI 或 DWI)被认为是神经结构体内分析最有前途的工具之一;然而,我们用这种技术对胎儿和新生儿大脑进行成像的能力受到几个限制的限制;包括主体运动、有限的空间分辨率和几何失真。迫切需要对胎儿和新生儿进行运动稳健的高分辨率 DWI 成像。由于缺乏此类成像技术,我们对早期大脑生长和最常见的神经发育异常的理解在很大程度上仅限于尸检(体外)研究的见解。该项目旨在通过开发创新的、运动稳健的超分辨率 C 来填补这些空白。这涉及开发和评估一种基于 MRI 物理学和先进图像处理技术的新颖方法,该方法可校正运动并重建高分​​辨率 DWI 数据来描绘小胎儿和新生儿大脑的神经微观结构。该项目的两个具体目标分别是1)移动受试者(旨在改善新生儿DWI)和2)胎儿;目标是实现高分辨率分数各向异性图,以及发育中大脑中神经纤维束的单张量和多张量模型,尽管受试者有运动。这一贡献很重要,因为它 1) 能够在胎儿和母亲间歇性运动的情况下对胎儿大脑中的神经连接进行体内高分辨率映射,2) 通过运动稳健的成像协议显着简化了新生儿和早产儿的研究 MRI,该协议可补偿对于较小的头部运动,3) 减少了新生儿和不合作患者的临床 MRI 中对镇静和麻醉的需求,4) 同时校正运动并提高 DWI 的空间分辨率,从而导致早期大脑发育中神经结构和连接性分析的显着改善。由于大脑无法自我修复和再生,因此在大脑生长的早期阶段进行干预至关重要。神经救援干预措施的发展,例如脑低温干预措施,已被证明可以减少出生窒息引起的脑损伤,高度依赖于准确的体内分析。同样,对神经发育破坏或延迟(由于早产或先天异常)的评估在很大程度上依赖于精确的体内分析。本申请提出的早期大脑发育的体内分析对于实现这些研究目标至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALI GHOLIPOUR-BABOLI其他文献

ALI GHOLIPOUR-BABOLI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALI GHOLIPOUR-BABOLI', 18)}}的其他基金

Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10503458
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10684840
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10580011
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10345136
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10578814
  • 财政年份:
    2021
  • 资助金额:
    $ 38.86万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10428634
  • 财政年份:
    2021
  • 资助金额:
    $ 38.86万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10280126
  • 财政年份:
    2021
  • 资助金额:
    $ 38.86万
  • 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
  • 批准号:
    10552663
  • 财政年份:
    2019
  • 资助金额:
    $ 38.86万
  • 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
  • 批准号:
    10332741
  • 财政年份:
    2019
  • 资助金额:
    $ 38.86万
  • 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
  • 批准号:
    9284277
  • 财政年份:
    2014
  • 资助金额:
    $ 38.86万
  • 项目类别:

相似国自然基金

地表与大气层顶短波辐射多分量一体化遥感反演算法研究
  • 批准号:
    42371342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
  • 批准号:
    72361020
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
  • 批准号:
    52372329
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效非完全信息对抗性团队博弈求解算法研究
  • 批准号:
    62376073
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
  • 批准号:
    10696658
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
  • 批准号:
    10689663
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
  • 批准号:
    10349621
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了