WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
基本信息
- 批准号:10819927
- 负责人:
- 金额:$ 87.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-04 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAllyAnatomyArchivesAreaAtlasesBiological MarkersBiopsyBiopsy SpecimenCancer BiologyCancer CenterCancer ModelCancer PatientCatalogingCellsClinicalClinical OncologyClinical ResearchClinical TreatmentClinical TrialsClonal EvolutionClonalityCollaborationsCommunitiesComprehensive Cancer CenterCytometryDNADataData AnalysesData SetDimensionsDisciplineDiseaseEcosystemEnsureEvolutionFAIR principlesFosteringFoundationsFutureGenerationsGenesGenomeGenomicsGlioblastomaGoalsHistopathologyHumanImageImmuneImmunofluorescence ImmunologicIndividualInformaticsInfrastructureInstitutionKnowledgeLinkLocationMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMedicineMethodologyMinority GroupsModelingMolecularMutateMutationNeoplasm MetastasisOrganPancreatic Ductal AdenocarcinomaPathologyPathway AnalysisPathway interactionsPatient RecruitmentsPatientsPhasePhenotypePhysiciansPilot ProjectsPositron-Emission TomographyProcessPrognosisProteinsProteomeProteomicsRecurrenceReportingResearchResearch PersonnelResistanceSamplingSeriesSiteSliceSolid NeoplasmSpatial DistributionSpecimenStructureTimeTissuesTranslational ResearchUnited States National Institutes of HealthUniversitiesValidationWashingtonanalysis pipelineanticancer researchcancer cellcancer therapycancer typecell typechemotherapyclinical applicationclinical careclinical imagingcohesiondata integrationdensitydimensional analysisdiverse datadrug resistance developmentexome sequencingexperiencegenome sequencingimprovedin vivoinnovationliquid chromatography mass spectrometrymalignant breast neoplasmmedical schoolsmetabolomemetabolomicsmultidisciplinaryneoplastic cellnew technologynew therapeutic targetpatient populationpremalignantrelational databaseresponsesingle-cell RNA sequencingsynergismtherapeutic developmenttherapy resistantthree dimensional structurethree-dimensional modelingtooltranscriptome sequencingtriple-negative invasive breast carcinomatumortumor progressionwhole genome
项目摘要
Project Summary/Abstract
Diverse areas of cancer research have progressed to the point that it is now feasible to meaningfully integrate
research data and clinical information across the molecular, cellular, and tissue realms into a larger, more
detailed picture of the onco-dynamics of cancer, including spatial-temporal details during cancer treatment and
progression. Physicians and researchers at Washington University School of Medicine (WUSM) and the Siteman
Cancer Center (WUSM-SCC) are longtime leaders in the allied sub-disciplines of cancer, including genomics,
proteomics, imaging, functional characterization, pathology, clinical trials, and clinical care. WUSM-SCC is an
NCI-designated Comprehensive Cancer Center, which sees ~9,000 new cancer patients annually. Building on
our expertise, established infrastructure, large patient population, and extraordinary institutional commitment, we
propose to develop the Washington University Human Tumor Atlas Research Center (WU-HTARC) within the
NIH Human Tumor Analysis Network (HTAN).
We will focus on generating organ-specific human tumor atlases for three high priority cancer types associated
with exceptionally poor prognosis: the triple negative breast cancer (TNBC), glioblastoma (GBM), and pancreatic
ductal adenocarcinoma (PDAC). Collectively, we will analyze ~1,600-2000 samples collected from spatially
separated locations and at different time points along the clinical treatment course from 300-375 patients
(selected from ~750 recruited patients) for the duration of the project. In addition to standard histopathological
analyses, bulk DNA/RNA sequencing, proteomics, and clinical imaging, etc., we will conduct cutting-edge,
comprehensive analyses, including single cell RNA-Seq (scRNA-Seq), multiplexed immunofluorescent protein
localization (MxIF), mass cytometry/Cytometry by Time of Flight (CyTOF) cellular characterization, metabolomics
analysis, innovative imaging, and 3-D modeling.
We have established infrastructure covering the aforementioned areas, from specimen procurement
(Biospecimen Unit), to multidisciplinary analyses modules (Characterization Unit), and to analysis pipelines (Data
Analysis Unit). Data generated from this study will be valuable for revealing the clonal evolution of the tumor
cells from longitudinally collected specimens and to reconstruct the tumor ecosystem involving non-cancer cells
and acellular structures. Our atlases will have comprehensive data integration at the 3D level over time, providing
unprecedented 4D models for the 3 selected cancer types. Our established infrastructure and continuous efforts
in incorporating new technologies in omics, imaging, and informatics, will help ensure our atlases will be the
state-of-the-art, taking full advantage of the latest progress in these fields and will continue to evolve beyond the
pilot phase to facilitate cancer research and improve clinical care.
The proposed atlases target a set of critically important clinical questions, including tumor resistance that has
long been a challenge for GBM treatment and also an important clinical problem in BRCA/TNBC and PDAC, in
which minority populations are disproportionately affected. Other emphases are BRCA response/resistance to
chemotherapy, PDAC metastasis, and GBM local recurrence in conjunction with resistance to therapy. These
atlases can cross reference each other for pan-cancer analyses. We will also seek to cooperate with any Pre-
Cancer Atlas (PCA) centers studying these disease types to maximize the temporal continuity of research on
these cancers. The similarities and differences among the three selected cancer types will provide synergy
among the three atlases and will also allow us to accumulate valuable knowledge in atlas building for other
cancer types. The data, specimens, and experience gained by our center will be shared with HTAN and the
broader research community to foster the next important discoveries in personalized cancer medicine.
项目摘要/摘要
癌症研究的各个领域已经发展到现在有意义地整合现在是可行的。
整个分子,细胞和组织领域的研究数据和临床信息都变成更大,更大的
癌症全动力学的详细图片,包括癌症治疗期间的时空细节和
进展。华盛顿大学医学院(WUSM)和现场人士的医师和研究人员
癌症中心(WUSM-SCC)是癌症盟军亚科中的长期领导者,包括基因组学,,
蛋白质组学,成像,功能表征,病理,临床试验和临床护理。 WUSM-SCC是一个
NCI指定的综合癌症中心每年看到约9,000名新的癌症患者。建立
我们的专业知识,建立的基础设施,大量的患者人口和非凡的机构承诺,我们
建议在华盛顿大学人类肿瘤研究中心(WU-HTARC)发展
NIH人类肿瘤分析网络(HTAN)。
我们将专注于生成针对三种相关的三种高优先级类型的器官特异性人肿瘤图谱
预后异常不佳:三重阴性乳腺癌(TNBC),胶质母细胞瘤(GBM)和胰腺
导管腺癌(PDAC)。总的来说,我们将分析从空间收集的〜1,600-2000个样本
沿临床治疗课程的分离位置和不同时间点与300-375例患者
(从约750名招募患者中选择)在项目期间。除了标准组织病理学
分析,大量DNA/RNA测序,蛋白质组学和临床成像等,我们将进行尖端,
全面的分析,包括单细胞RNA-SEQ(SCRNA-SEQ),多重免疫荧光蛋白
定位(MXIF),按飞行时间(Cytof)细胞表征,代谢组学,质量细胞仪/细胞术
分析,创新成像和3-D建模。
我们已经建立了涵盖上述区域的基础设施,从标本采购
(生物传播单元),多学科分析模块(表征单元)和分析管道(数据
分析单位)。这项研究产生的数据对于揭示肿瘤的克隆演化很有价值
来自纵向收集的标本的细胞,并重建涉及非癌细胞的肿瘤生态系统
和细胞结构。随着时间的推移,我们的地图集将在3D级别进行全面的数据集成,提供
三种选定癌症类型的空前的4D模型。我们建立的基础设施和持续努力
在将新技术纳入OMIC,成像和信息学中,将有助于确保我们的地图集将成为
最先进的,充分利用这些领域的最新进展,并将继续发展
促进癌症研究并改善临床护理的试点阶段。
提出的地图集针对一组至关重要的临床问题,包括具有
长期以来一直是GBM治疗的挑战,也是BRCA/TNBC和PDAC的重要临床问题
哪些少数群体受到不成比例的影响。其他重点是BRCA对
化学疗法,PDAC转移和GBM局部复发与对治疗的耐药性。这些
地图酶可以互相参考以进行泛伴奏分析。我们还将寻求与任何前
癌症地图集(PCA)中心研究这些疾病类型,以最大程度地提高研究的时间连续性
这些癌症。三种选定癌症类型之间的相似性和差异将提供协同作用
在这三个地图集中,还将使我们能够在Atlas建筑中积累宝贵的知识
癌症类型。我们中心获得的数据,标本和经验将与HTAN共享
更广泛的研究社区,以促进个性化癌症医学中的下一个重要发现。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comprehensive 3D phenotyping reveals continuous morphological variation across genetically diverse sorghum inflorescences
- DOI:10.1111/nph.16533
- 发表时间:2020-04-16
- 期刊:
- 影响因子:9.4
- 作者:Li, Mao;Shao, Mon-Ray;Topp, Christopher N.
- 通讯作者:Topp, Christopher N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Ding其他文献
Consensus analysis for multi-agent systems via periodic event-triggered algorithms with quantized information
通过具有量化信息的周期性事件触发算法对多智能体系统进行共识分析
- DOI:
10.1016/j.jfranklin.2017.08.003 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Hong-Xiao Zhang;Ping Hu;Zhi-Wei Liu;Li Ding - 通讯作者:
Li Ding
Li Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Ding', 18)}}的其他基金
Washington University PDX Development and Trial Center - Evaluation of Abemaciclib in Combination with Olaparib in Ovarian Cancer and Breast Cancer Patient-derived Xenograft Models
华盛顿大学 PDX 开发和试验中心 - Abemaciclib 联合 Olaparib 在卵巢癌和乳腺癌患者异种移植模型中的评估
- 批准号:
10582164 - 财政年份:2022
- 资助金额:
$ 87.47万 - 项目类别:
Deep exploration of drivers, evolution, and microenvironment toward discovering principal themes in cancer
深入探索驱动因素、进化和微环境,以发现癌症的主要主题
- 批准号:
10301100 - 财政年份:2021
- 资助金额:
$ 87.47万 - 项目类别:
Deep exploration of drivers, evolution, and microenvironment toward discovering principal themes in cancer
深入探索驱动因素、进化和微环境,以发现癌症的主要主题
- 批准号:
10689729 - 财政年份:2021
- 资助金额:
$ 87.47万 - 项目类别:
Washington University PDX Development and Trial Center
华盛顿大学 PDX 开发和试验中心
- 批准号:
10371645 - 财政年份:2021
- 资助金额:
$ 87.47万 - 项目类别:
相似国自然基金
考虑水平、垂直加速度影响的地震滑坡危险性快速评价方法研究
- 批准号:42307269
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
剪切场下熔体真实流动状态调控及其对结晶影响的研究
- 批准号:51803192
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
射电源结构效应对太阳系质心加速度估计的影响
- 批准号:11603060
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
强震动观测台站建筑物对强地面运动的影响及其处理方法研究
- 批准号:51608098
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
封装效应对微加速度计稳定性影响的基础问题研究
- 批准号:U1530132
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:联合基金项目
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 87.47万 - 项目类别:
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 87.47万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 87.47万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 87.47万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 87.47万 - 项目类别: