Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
基本信息
- 批准号:10267217
- 负责人:
- 金额:$ 43.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alcohol consumptionAlcohol dependenceBehavioralBig DataBiologicalBiological MarkersBrainBrain imagingBrain regionClassificationClinicalClinical DataCluster AnalysisCollaborationsComputational ScienceComputer softwareDataDatabasesDevelopmentDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDiseaseDistalDrug AddictionEmotionalEmotionsEtiologyExhibitsFoundationsFunctional disorderGenesGeneticGenetic MarkersGenetic RiskGenetic studyGenomicsGenotypeGoalsGraphHeritabilityHeterogeneityHumanImageIndividualInterdisciplinary StudyInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InvestigationLabelLinkMachine LearningMagnetic Resonance ImagingMental HealthMental disordersMethodologyMethodsModalityModelingMultimodal ImagingNational Institute of Mental HealthNeurobiologyNeurosciencesNicotine Use DisorderPathway interactionsPatternPhenotypeProcessResearchResearch Domain CriteriaRewardsSamplingSingle Nucleotide PolymorphismStatistical AlgorithmStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureSubstance Use DisorderSymptomsSystemTestingVariantWorkaddictionbasebig-data sciencebiobankclinical diagnosticscocaine usecognitive neuroscienceconnectomeconvolutional neural networkdata structuredisease classificationdisorder subtypeendophenotypeexecutive functionexperiencefallsgenetic analysisgenetic variantgenome wide association studygenome-widegray matterimaging biomarkerimaging geneticsimaging modalityindividual variationinnovationmultidimensional datamultimodal datamultimodalitynetwork modelsneural correlateneurogeneticsneuroimagingneuromechanismneuropsychiatric disordernovelprecision medicineprogramsrelating to nervous systemresponserisk variantstatistical and machine learningtooltraittreatment responsewhole genome
项目摘要
ABSTRACT
This application represents our ongoing commitment to developing an innovative and interdisciplinary research
program on the classification of substance use disorders (SUDs). This research is achieved through
quantitative analysis of multidimensional data that combine clinical symptoms and diagnoses, imaging
markers, and genotypes. The team has a PI with expertise in computational science and the development and
implementation of innovative statistical algorithms to understand multidimensional data; a PI with extensive
experience in systems, imaging and addiction neuroscience; and a co-I who has expertise in the genetics of
SUDs. Our previous R01 project employed a sample of ~12,000 individuals aggregated from multiple genetic
studies of alcohol and drug dependence to generate SUD subtypes based on clinical symptoms. Because
clinical manifestations are distal endpoints in the biological pathway, the genetic effects identified are often
weak and inconsistent, and consequently difficult to detect even in large samples. As championed by the NIMH
Research Domain Criteria (RDoC) research, the etiologies of psychiatric disorders, including SUDs, can be
fruitfully characterized by dimensional neural features. This project thus extends our ongoing work to include
imaging neural features in the classification of SUDs. Specifically, we will utilize a large database from the UK
Biobank Project that provides both genetic and multi-modality magnetic resonance imaging (MRI) data.
Building on our work with the US Human Connectome Project, we aim in the current project to integrate
clinical, imaging, and genotype data to investigate the neurobiological substrates of SUD diagnostic labels, and
to derive SUD subtypes that are optimized for gene finding. Methodologically, we replace the classic statistical
analysis that is confirmatory and biased to an a priori hypothesis by an approach that emphasizes pattern
discoveries from big data. Our specific aims are to: (I): identify neuroimaging features that represent robust
markers of addiction and differentiate SUD subtypes that can be confirmed by multi-modality evidence; (II)
employ a novel brain connectivity model, on the basis of graph convolutional neural networks, to identify neural
markers that precisely characterize the differences in structural changes and functional circuits related to
SUDs; and (III) derive an innovative machine learning model to identify highly heritable neurobiological
subtypes of SUDs that facilitate investigation of the genetic basis of addiction. We will focus on alcohol and
nicotine use disorders to demonstrate the conceptual and methodological approaches. We believe that, by
providing a productive conceptual and methodological platform to integrate imaging and genetic data to
understand the etiologies of SUDs, this research is highly responsive to the RFA “Leveraging Big Data Science
to Elucidate the Neural Mechanisms of Addiction and SUD.” The machine learning tools developed for this
project will provide an innovative and reliable foundation to enhance the aggregation and analysis of
multidimensional data, and to meet the diagnostic and predictive challenges in mental health research.
抽象的
该应用程序代表了我们对开发创新和跨学科研究的持续承诺
这项研究是通过物质使用障碍分类计划实现的。
结合临床症状和诊断、影像学的多维数据定量分析
该团队拥有一位具有计算科学和开发专业知识的 PI。
实施创新的统计算法来理解多维数据;
拥有系统、成像和成瘾神经科学方面的经验;以及一名在遗传学方面拥有专业知识的副教授;
我们之前的 R01 项目采用了来自多个基因的约 12,000 名个体的样本。
对酒精和药物依赖的研究,根据临床症状生成 SUD 亚型。
临床表现是生物途径的远端终点,所确定的遗传效应通常是
正如 NIMH 所倡导的,微弱且不一致,因此即使在大样本中也难以检测。
研究领域标准 (RDoC) 研究,包括 SUD 在内的精神疾病的病因学可以是
因此,该项目以维度神经特征为特征,将我们正在进行的工作扩展到包括。
具体来说,我们将利用英国的大型数据库来进行 SUD 分类。
提供遗传和多模态磁共振成像 (MRI) 数据的生物银行项目。
在我们与美国人类连接组项目合作的基础上,我们的目标是在当前项目中整合
临床、影像和基因型数据,以研究 SUD 诊断标签的神经生物学底物,以及
为了导出针对基因发现而优化的 SUD 亚型,我们取代了经典的统计方法。
通过强调模式的方法对先验假设进行验证和偏向的分析
我们的具体目标是:(I):识别代表稳健的神经影像特征。
可以通过多模态证据证实的成瘾标志物和区分 SUD 亚型 (II)
采用基于图卷积神经网络的新型大脑连接模型来识别神经网络
精确表征相关结构变化和功能电路差异的标记
SUD;(III) 推导创新的机器学习模型来识别高度遗传的神经生物学
促进成瘾遗传基础研究的 SUD 亚型 我们将重点关注酒精和成瘾问题。
我们认为,通过尼古丁使用障碍来展示概念和方法。
提供一个富有成效的概念和方法平台,将成像和遗传数据整合到
了解 SUD 的病因,这项研究对 RFA“利用大数据科学
阐明成瘾和 SUD 的神经机制。”
项目将为加强数据的汇总和分析提供创新和可靠的基础
多维数据,并满足心理健康研究中的诊断和预测挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10056455 - 财政年份:2020
- 资助金额:
$ 43.26万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10451612 - 财政年份:2020
- 资助金额:
$ 43.26万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10668244 - 财政年份:2020
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10418671 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10196980 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9980496 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9758034 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
- 批准号:
9224405 - 财政年份:2017
- 资助金额:
$ 43.26万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9000141 - 财政年份:2015
- 资助金额:
$ 43.26万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9186998 - 财政年份:2015
- 资助金额:
$ 43.26万 - 项目类别:
相似国自然基金
内侧前额叶皮层的特异性投射环路在酒精依赖行为中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
菊粉调节肠道菌群影响5-HT合成改善酒精依赖戒断小鼠焦虑抑郁样行为的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
新型神经反馈技术治疗酒精依赖的效果及起效的神经机制
- 批准号:31800927
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
酒精依赖综合征患者肠道微生态变异与健康及成瘾机制的关联研究
- 批准号:81660232
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
基于组学策略的酒精依赖分子机制的初步探究
- 批准号:31600666
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of the central nucleus of the amygdala during ethanol-rewarded instrumental tasks
杏仁核中央核在乙醇奖励的仪器任务中的作用
- 批准号:
10679383 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
Nucleus reuniens, chronic ethanol and cognitive deficits
核团聚、慢性乙醇和认知缺陷
- 批准号:
10825768 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
GluD1 regulation of structural plasticity in chronic ethanol exposure and protracted withdrawal
GluD1 对慢性乙醇暴露和长期戒断中结构可塑性的调节
- 批准号:
10724599 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
Resolving sources of heterogeneity and comorbidity in alcohol use disorder
解决酒精使用障碍的异质性和合并症的来源
- 批准号:
10783325 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别: