Quantitative methods to subtype drug dependence and detect novel genetic variants

定量方法对药物依赖性进行分型并检测新的遗传变异

基本信息

  • 批准号:
    9186998
  • 负责人:
  • 金额:
    $ 21.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite great progress in molecular genetic methods, considerably less progress has been made in the refinement of phenotypes for substance dependence (SD) and other psychiatric disorders. SD, as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM), is clinically and etiologically heterogeneous. The DSM-defined traits are not optimal for gene finding efforts, which has substantially limited our understanding of the genetic etiology of SD. Thus, the differentiation of homogeneous subtypes of drug use, related behaviors, and co-occurring phenotypes could improve the identification of genetic variation that underlies the risk for SD and other complex traits. Existing methods are not adequate to tackle this task. The most sophisticated subtyping methods available perform unsupervised cluster analysis or latent class analysis of a disorder's clinical features. Without theoretical guidance, blind cluster or latent class analysis can lead to subtypes of little utilityin genetic analysis. In this project, we will develop novel statistical methods to subtype SD traits quantitatively. Using data from >11,000 identically assessed subjects aggregated from family-based and case-control genetic studies (including genome-wide association studies (GWAS)) of cocaine, opioid and alcohol dependence, we will identify clinical subtypes that are optimized with respect to heritability. All subjects underwent thorough phenotyping using a poly-diagnostic instrument that includes 3000 items, yielding reliable demographic, medical, substance use, and substance-related measures, and DSM diagnoses of all major substance use and psychiatric disorders. A majority of the subjects also underwent GWAS. Our preliminary results support the hypothesis that careful subtyping of substance use and related behaviors enhances the detection of genetic variants that contribute to the risk of addiction-related phenotypes and are not detected using a standard diagnostic approach. The primary aims of the proposed research are to develop: (1) bioinformatics methods to derive quantitative traits that are highly heritable n terms of traditional narrow-sense heritability and recently-defined SNP-based heritability; (2) integrative methods to jointly analyze phenotypic features and genetic markers to identify subtypes that are homogeneous phenotypically and genetically; and (3) genetic association approaches that are more efficient for subtype analysis. The derived subtypes and their association findings will be validated using multiple independent samples. An important secondary aim of the project is to develop and disseminate validated methods and software for public use through the PI's website. In summary, the objectives of the project are significant in their potential to enhance the discovery of genetic variants that contribute to the risk of SD usin novel methods validated by the interdisciplinary research team. These methods, once applied to understanding the etiology of SD, may be suitable for extension to other complex phenotypes.
描述(由申请人提供):尽管分子遗传学方法取得了长足的进步,但在对物质依赖(SD)和其他精神疾病的表型的改进中取得了较少的进步。 SD在临床和病因上是精神障碍(DSM)的诊断和统计手册所定义的。 DSM定义的特征对于寻找基因的努力并不是最佳选择,这在很大程度上限制了我们对SD遗传病因的理解。因此,药物使用,相关行为和同时存在的表型的均质亚型的分化可以改善遗传变异的鉴定,这是SD和其他复杂性状的风险。现有方法不足以应对这项任务。可用的最复杂的亚型方法对疾病的临床特征进行无监督的聚类分析或潜在类别分析。如果没有理论指导,盲簇或潜在类别分析可以导致几乎没有效用的遗传分析的亚型。在这个项目中,我们将开发新颖的统计方法,以定量为亚型SD特征。使用来自可卡因,阿片类药物和酒精依赖性的11,000名相同评估的相同评估的受试者的数据(包括全基因组和酒精依赖性基因组关联研究(GWAS)),我们将确定针对遗传性优化的临床亚型。所有受试者都使用包括3000个项目的多诊断仪器进行了彻底的表型,从而产生可靠的人口统计学,医疗,药物使用和与物质相关的措施,以及所有主要药物使用和精神疾病的DSM诊断。大多数受试者也接受了GWAS。我们的初步结果支持以下假设:对物质使用和相关行为的仔细亚型增强了有助于成瘾相关表型风险的遗传变异的检测,并且未使用标准诊断方法检测到。拟议研究的主要目的是发展:(1)得出定量性状的生物信息学方法,这些方法是传统窄义遗传力和最近定义的基于SNP的遗传力的高度遗传性n术语; (2)共同分析表型特征和遗传标记的整合方法,以鉴定表型和遗传上均匀的亚型; (3)对亚型分析更有效的遗传关联方法。派生的亚型及其关联发现将使用多个独立样本进行验证。该项目的重要次要目的是开发和传播经过验证的方法和软件,以通过PI的网站公开使用。总而言之,该项目的目标对于增强发现遗传变异的潜力至关重要,这些变异有助于跨学科研究团队验证的SD USIN新颖方法的风险。这些方法曾经应用于理解SD的病因,可能适合扩展到其他复杂表型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinbo Bi其他文献

Jinbo Bi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinbo Bi', 18)}}的其他基金

Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10267217
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10056455
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10451612
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10668244
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10418671
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10196980
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9980496
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9758034
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
  • 批准号:
    9224405
  • 财政年份:
    2017
  • 资助金额:
    $ 21.75万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9000141
  • 财政年份:
    2015
  • 资助金额:
    $ 21.75万
  • 项目类别:

相似海外基金

Pain Medication Prescriptions and Misuse Following Treatment for Alcohol Use Disorders
酒精使用障碍治疗后的止痛药处方和滥用
  • 批准号:
    10201106
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Preventing alcohol misuse and consequences in vulnerable women
防止弱势女性滥用酒精及其后果
  • 批准号:
    10039144
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Mechanistic studies of alcohol-sleep interactions
酒精与睡眠相互作用的机制研究
  • 批准号:
    9912917
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
Mechanistic studies of alcohol-sleep interactions
酒精与睡眠相互作用的机制研究
  • 批准号:
    10019443
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
Drug Abuse and Related Health Disparities: An Intergenerational Longitudinal Study of Offspring of Delinquent Youth (Northwestern Offspring Project)
药物滥用和相关的健康差异:违法青少年后代的代际纵向研究(西北后代项目)
  • 批准号:
    10168013
  • 财政年份:
    2018
  • 资助金额:
    $ 21.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了