SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
基本信息
- 批准号:10196980
- 负责人:
- 金额:$ 24.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsCaringCellular PhoneClinicalClinical DataCommunitiesDataData SourcesDropsEarly treatmentEcological momentary assessmentFamilyFormulationHealth TechnologyInfluentialsLearningLocationMachine LearningMental DepressionMental HealthMethodsModelingNoiseParticipantPatient MonitoringPatient Self-ReportPatientsPharmaceutical PreparationsPhasePhysiciansPractice GuidelinesPrediction of Response to TherapyProcessProviderPublic HealthQuestionnairesResearchSafetySamplingSelf AdministrationSensorySleepSymptomsSystemTechniquesTimeTreatment outcomeautoencoderbaseclinical decision-makingdata de-identificationdeep learningdenoisingdepressive symptomsdesignfeature selectionglobal healthheterogenous datainnovationmHealthmedication compliancemedication safetymultimodalitymultitasknovelpredictive modelingrecruitresponsesensorsymptomatologytooltreatment responseuser-friendly
项目摘要
The current best practice guidelines for treating depression call for close monitoring of patients, and
periodically adjusting treatment as needed. This project will advance personalized depression treatment by
developing an innovative system, DepWatch, that leverages mobile health technologies and machine
learning tools to provide clinicians objective, accurate, and timely assessment of depression symptoms to
assist with their clinical decision making process. Specifically, DepWatch collects sensory data passively
from smartphones and wristbands, without any user interaction, and uses simple user-friendly interfaces to
collect ecological momentary assessments (EMA), medication adherence and safety related data from
patients. The collected data will be fed to machine learning models to be developed in the project to
provide weekly assessment of patient symptom levels and predict the trajectory of treatment response over
time. The assessment and prediction results are then presented using a graphic interface to clinicians to
help them make critical treatment decisions. Our project comprises two studies. Phase I collects sensory
data and other data (e.g., clinical data, EMA, tolerability and safety data) from 250 adult participants with
unstable depression symptomatology. The data thus collected will be used to develop and validate
assessment and prediction models, which will be incorporated into DepWatch system. In Phase II, three
clinicians will use DepWatch to support their clinical decision making process; a total of 50 participants
under treatment by the three participating clinicians will be recruited for the study. A number of innovative
machine learning techniques will be developed. These include a set of new learning formulations to
construct matrix-based longitudinal predictive models, and determine the temporal contingency and the
most influential features, and deep learning based data imputation methods that can handle both problems
of sporadic missing data as well as missing data in an entire view. In addition, multi-task feature learning
models and feature selection techniques will be expanded and refined for this challenging setting of large-scale
heterogeneous data.
治疗抑郁症的当前最佳实践指南要求对患者进行密切监测,并
根据需要定期调整治疗。该项目将通过
开发一种创新的系统Depwatch,该系统利用移动健康技术和机器
学习工具以提供临床医生的客观,准确和及时评估抑郁症状
协助他们的临床决策过程。具体而言,DepWatch被动地收集感官数据
来自智能手机和腕带,没有任何用户交互,并使用简单的用户友好接口到
收集生态瞬时评估(EMA),从
患者。收集到的数据将被馈送到要在项目中开发的机器学习模型
每周评估患者症状水平,并预测治疗反应的轨迹
时间。然后,使用临床医生的图形界面来提出评估和预测结果
帮助他们做出关键的治疗决策。我们的项目包括两项研究。第一阶段收集感官
来自250名成年参与者的数据和其他数据(例如临床数据,EMA,耐受性和安全数据)
不稳定的抑郁症状学。因此收集的数据将用于开发和验证
评估和预测模型,该模型将纳入DepWatch系统。在第二阶段,三个
临床医生将使用Depwatch来支持其临床决策过程;共有50名参与者
在三名参与的临床医生的治疗下,将招募该研究。许多创新
将开发机器学习技术。这些包括一组新的学习配方
构建基于基质的纵向预测模型,并确定时间偶然性和
大多数有影响力的功能以及可以解决这两个问题的基于深度学习的数据插补方法
在整个视图中零星丢失的数据以及丢失的数据。此外,多任务功能学习
对于这种挑战的大规模设置,模型和功能选择技术将被扩展和完善
异质数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10267217 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10056455 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10451612 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10668244 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10418671 - 财政年份:2019
- 资助金额:
$ 24.56万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9980496 - 财政年份:2019
- 资助金额:
$ 24.56万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9758034 - 财政年份:2019
- 资助金额:
$ 24.56万 - 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
- 批准号:
9224405 - 财政年份:2017
- 资助金额:
$ 24.56万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9000141 - 财政年份:2015
- 资助金额:
$ 24.56万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9186998 - 财政年份:2015
- 资助金额:
$ 24.56万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
- 批准号:
10667885 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:
10765218 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Leveraging genetic and electronic health records data to identify novel targets and drugs for treating alcohol
利用遗传和电子健康记录数据来确定治疗酒精的新靶点和药物
- 批准号:
10888495 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别: