Interventional Oncology

介入肿瘤学

基本信息

  • 批准号:
    10262635
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The Center for Interventional Oncology (CIO) was established in late FY 09 at the NIH Clinical Center (CC) to develop and translate image-guided technologies for localized cancer treatments. The Center is a collaboration involving the CC and the National Cancer Institute (NCI), and to lesser extent NIBIB. The Center draws on the strengths of each partner to investigate how imaging technologies and devices can diagnose and treat localized cancers in ways that are precisely targeted and minimally or non-invasive. It will also help bridge the gap between diagnosis and therapy, and between emerging technology and procedural medicine. Advanced imaging methods have ushered in an era of earlier detection of cancers that are frequently localized to a single organ or region, such as the liver. Interventional oncology often provides cancer patients with local or regional treatment options to augment the standard systemic treatment options like: immunotherapy, chemotherapy, surgery, and radiation. CIO investigators will leverage the interdisciplinary, translational environment at the CC to investigate and optimize how and when to combine drugs, devices, and multimodal imaging navigation. For example, "activatable" drugs can be injected in a vein or artery, then deployed directly in the tumor with needles or catheters using "medical GPS", a technique that enables the physician to navigate through the body with real-time visualization using the latest advanced imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), cone beam CT (CBCT), or ultrasound. Pre-procedural images are reused to guide devices delivering targeted therapy to the location of the disease, making the procedure more cost-effective because it doesn't require the imaging system to be physically present to take advantage of the information contained within. A prior prostate MRI, for example, can be used to help with guided biopsy or focal ablation by using a "medical GPS"-enabled needle and ultrasound, without requiring, occupying or tying up an MRI system during the procedure. In another example, a thin needle or sound waves can be used to ablate tumors and enhance targeted drug delivery. Energy sources include high-intensity focused ultrasound, freezing, microwaves, laser, and radiofrequency. Researchers also expand investigations into image-guided drug delivery or image-guided "drug painting," where the image can be used to prescribe a particular drug to a specific region, by combining targeted, image-able-able or activate-able drugs with localized energy or heat to deploy the drug within specially engineered micro- or nano-particles. The Center provides a forum to encourage collaborations among researchers and patient-care experts in medical, surgical, urologic, and radiation oncology and interventional radiology. The CC provides an exceptional environment for this type of collaborative translational research and patient care. Other major program components include the development of new image-guided methods for personalized drug investigations (or tracking tissue responses to investigational drugs during drug discovery) and first-in-human investigations involving new drugs, devices, image-guided robotic assistance, and micro- and nano-sized drug vectors. Targeted sequential biopsy is a powerful tool for drug discover or biomarker characterization. Education and cross-training is another important part of the program. Significant gaps exist between the various disciplines, between research efforts and patient care, and between diagnosis and treatment. The gaps may be integrated through advanced image methods for localized therapy. CIO trainees augment existing training programs and underline the unique translational atmosphere at the NIH, where bench-to-bedside is the rule. Specific aims include: 1. Develop training and education in Interventional Oncology 2. Develop novel image-guided methods for smart biopsy and biomarker procurement to support targeted therapeutics 3. Support patient care using novel minimally invasive Interventional Oncology techniques 4. Pursue research in novel techniques and technologies in Interventional Oncology. This program is ideally and uniquely positioned to provide an interdisciplinary environment that combines training, patient care, and translational research to accelerate progress in interventional oncology and molecularly targeted interventions. The focus is upon translational models, translational tools, and actual practical deliverables of translation of multidisciplinary paradigms that meet specific clinical needs. A recent addition of deep learning in cancer was begun with the goal of integrating digital pathology, molecular and imaging information for specific cancers and cancer interventions. CIO managed 10 preclinical protocols and > 5 clinical protocols. CIO staff are due to receive 2 PhDs this fiscal year. The CIO has trained many students, residents, fellows, PhD candidates, junior faculty, visiting scientists, engineers, and collaborating scientists, who have successfully advanced in their academic careers and are practicing in interventional radiology, radiology, urology, radiation oncology, veterinary medicine, and various senior positions in academics and industry (see mentoring appendix). The Woodchuck HCC model was established and characterized for IR. Novel software and hardware was developed for patients: (Angle-Nav, OncoNav, PercuNav, UroNav, CystoNav, RenoNav, Airwaze, BronchMEMS). Augmented reality for smartphones made it to IR clinic. The AI Resource was established for an ecosystem for cancer. Fusion guided ablation was developed and deployed for the office setting, as was prostate biopsy with needle and ultrasound totally outside of the rectum. Smartphone interventions were brought to clinic. CIO accomplished the 1st in human use of artificial intelligence for segmentation and registration during a thermal ablation procedure, Transperineal hand held ultrasound fusion biopsy without a frame or stepper stage was reduced to practice, which is becoming more main stream already with rapid adoption. In the translational animal lab, CIO characterized woodchuck molecular immune correlates for woodchuck hepatitis-induced HCC, developed a drug delivery model for drug dose painting with fusion and image-able drug eluting beads (invented and developed at the NIH CIO), developed and reported topotecan drug eluting beads in rabbit VX2 liver tumors, characterized preclinical augmentation of check point inhibition with cryo in woodchuck liver cancer and cryo and RFA in mouse tumors in vivo, Multiple devices were developed including "Angle-Nav" MEMS clip to needle, Airwaze, BronchoMEMS, CystoNav. Augmented reality via smartphone was validated. Developed small molecule checkpoint inhibitor "drug eluting immuno-beads". Artificial intelligence deep learning models for classification of COVID-19 were developed and interfaced with PACS. Ultrasound tomography for the prostate was further developed with ex vivo human trials starting FY21. Raw analysis of ultrasound signal during prostate biopsy will validate an NIH-UBC-Queens CIHR funded collaboration on ultrasound computer aided detection for prostate cancer. Artificial intelligence efforts will focus on prostate liver and kidney cancer. Recent developments with NCI include a prostate segmentation model and an "autonomous driving radiologist" for standardized and AI enhanced detection and classification of prostate MRI lesions. The CIO continues to straddle the interface between multiple disciplines and encourages members and collaborators to fertilize the interdisciplinary lands in between the labels of specific fields or specializations, in order to truly meet the team science definition of truly multi-disciplinar
介入肿瘤学中心 (CIO) 于 2009 财年末在 NIH 临床中心 (CC) 成立,旨在开发和转化用于局部癌症治疗的图像引导技术。该中心是 CC 和国家癌症研究所 (NCI) 以及 NIBIB 之间的合作项目。该中心利用每个合作伙伴的优势,研究成像技术和设备如何以精确靶向、微创或无创的方式诊断和治疗局部癌症。它还将有助于弥合诊断和治疗之间以及新兴技术和程序医学之间的差距。 先进的成像方法开创了早期检测癌症的时代,这些癌症通常局限于单个器官或区域,例如肝脏。介入肿瘤学通常为癌症患者提供局部或区域治疗方案,以增强标准的全身治疗方案,例如:免疫疗法、化疗、手术和放疗。 CIO 研究人员将利用 CC 的跨学科、转化环境来研究和优化如何以及何时结合药物、设备和多模态成像导航。例如,“可激活”药物可以注射到静脉或动脉中,然后使用“医用 GPS”通过针或导管直接部署在肿瘤中,这种技术使医生能够使用实时可视化技术在体内进行导航。最新的先进成像技术,例如磁共振成像 (MRI)、正电子发射断层扫描 (PET)、计算机断层扫描 (CT)、锥形束 CT (CBCT) 或超声波。手术前的图像被重复使用来引导设备向疾病部位提供靶向治疗,从而使手术更具成本效益,因为它不需要成像系统实际存在来利用其中包含的信息。例如,先前的前列腺 MRI 可用于通过使用“医用 GPS”针和超声波来帮助引导活检或局部消融,而无需在手术过程中占用或束缚 MRI 系统。在另一个例子中,细针或声波可用于消融肿瘤并增强靶向药物输送。能源包括高强度聚焦超声波、冷冻、微波、激光和射频。研究人员还扩大了对图像引导药物输送或图像引导“药物绘画”的研究,其中图像可用于通过将有针对性的、可成像或可激活的药物与特定药物相结合来向特定区域开出特定药物。局部能量或热量将药物部署在专门设计的微米或纳米颗粒中。该中心提供了一个论坛,鼓励医学、外科、泌尿外科、放射肿瘤学和介入放射学领域的研究人员和患者护理专家之间的合作。 CC 为此类合作转化研究和患者护理提供了特殊的环境。其他主要项目组成部分包括开发用于个性化药物研究的新图像引导方法(或在药物发现过程中跟踪研究药物的组织反应)以及涉及新药物、设备、图像引导机器人辅助和微型药物的首次人体研究。 - 和纳米尺寸的药物载体。靶向序贯活检是药物发现或生物标志物表征的强大工具。教育和交叉培训是该计划的另一个重要部分。不同学科之间、研究工作和患者护理之间以及诊断和治疗之间存在着巨大差距。这些间隙可以通过先进的图像方法进行整合以进行局部治疗。 CIO 学员增强了现有的培训计划,并强调了 NIH 独特的翻译氛围,从实验室到临床是规则。 具体目标包括: 1. 开展介入肿瘤学培训和教育 2. 开发用于智能活检和生物标志物采购的新型图像引导方法,以支持靶向治疗 3. 使用新型微创介入肿瘤学技术支持患者护理 4. 开展新技术研究和介入肿瘤学技术。该项目具有理想且独特的定位,旨在提供一个结合培训、患者护理和转化研究的跨学科环境,以加速介入肿瘤学和分子靶向干预措施的进展。重点是满足特定临床需求的多学科范式翻译的转化模型、转化工具和实际交付成果。最近开始增加癌症深度学习,目标是整合特定癌症和癌症干预的数字病理学、分子和成像信息。 CIO 管理 10 个临床前方案和超过 5 个临床方案。首席信息官 (CIO) 员工将于本财年获得 2 名博士学位。 CIO 培训了许多学生、住院医师、研究员、博士生、初级教员、访问科学家、工程师和合作科学家,他们在学术生涯中取得了成功,并在介入放射学、放射学、泌尿学、放射肿瘤学、兽医学领域执业以及学术界和工业界的各种高级职位(参见指导附录)。建立土拨鼠 HCC 模型并进行 IR 表征。为患者开发了新颖的软件和硬件:(Angle-Nav、OncoNav、PercuNav、UroNav、CystoNav、RenoNav、Airwaze、BronchMEMS)。智能手机的增强现实技术进入了 IR 诊所。 AI 资源是为癌症生态系统而建立的。融合引导消融术是为办公室环境开发和部署的,就像完全在直肠外使用针和超声进行的前列腺活检一样。智能手机干预被带到诊所。 CIO 首次在热消融过程中使用人工智能进行分割和配准,无需框架或步进台的经会阴手持式超声融合活检已付诸实践,随着快速采用,这种技术已成为主流。 在转化动物实验室中,CIO 表征了土拨鼠肝炎诱发的 HCC 的土拨鼠分子免疫相关性,开发了一种药物递送模型,用于使用融合和可成像药物洗脱珠(由 NIH CIO 发明和开发)进行药物剂量涂敷(由 NIH CIO 发明和开发),开发并报告兔 VX2 肝肿瘤中的拓扑替康药物洗脱珠,其特点是在土拨鼠肝癌中使用冷冻增强检查点抑制作用,在小鼠体内使用冷冻和 RFA 增强检查点抑制作用,开发了多种装置包括“Angle-Nav”MEMS 夹针、Airwaze、BronchoMEMS、CystoNav。通过智能手机的增强现实得到了验证。开发小分子检查点抑制剂“药物洗脱免疫珠”。开发了用于 COVID-19 分类的人工智能深度学习模型,并与 PACS 接口。从 2021 财年开始,通过离体人体试验进一步开发了前列腺超声断层扫描技术。前列腺活检期间超声信号的原始分析将验证 NIH-UBC-Queens CIHR 资助的前列腺癌超声计算机辅助检测合作。人工智能的工作将集中在前列腺癌和肾癌上。 NCI 的最新进展包括前列腺分割模型和“自动驾驶放射科医生”,用于标准化和人工智能增强的前列腺 MRI 病变检测和分类。 CIO继续跨越多个学科之间的交叉点,并鼓励成员和合作者在特定领域或专业标签之间的跨学科土地上施肥,以真正满足团队科学对真正多学科的定义

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10022065
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10691768
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10262633
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10262659
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10920175
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8952855
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10691770
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Optical and electromagnetic tracking guidance for hepatic interventions
肝脏干预的光学和电磁跟踪指导
  • 批准号:
    10691780
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10920176
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

典型草原不同退化类型雪水消融过程水分转换效率研究
  • 批准号:
    32360295
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
  • 批准号:
    42307523
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
  • 批准号:
    82302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“ROS响应开关”靶向脂质体减少心脏射频消融术后电传导恢复的研究
  • 批准号:
    82370318
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
  • 批准号:
    82302319
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

University of Wisconsin Prostate SPORE
威斯康星大学前列腺孢子
  • 批准号:
    10555398
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
  • 批准号:
    10833895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
  • 批准号:
    10606234
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了