Interventional Oncology

介入肿瘤学

基本信息

  • 批准号:
    10262635
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The Center for Interventional Oncology (CIO) was established in late FY 09 at the NIH Clinical Center (CC) to develop and translate image-guided technologies for localized cancer treatments. The Center is a collaboration involving the CC and the National Cancer Institute (NCI), and to lesser extent NIBIB. The Center draws on the strengths of each partner to investigate how imaging technologies and devices can diagnose and treat localized cancers in ways that are precisely targeted and minimally or non-invasive. It will also help bridge the gap between diagnosis and therapy, and between emerging technology and procedural medicine. Advanced imaging methods have ushered in an era of earlier detection of cancers that are frequently localized to a single organ or region, such as the liver. Interventional oncology often provides cancer patients with local or regional treatment options to augment the standard systemic treatment options like: immunotherapy, chemotherapy, surgery, and radiation. CIO investigators will leverage the interdisciplinary, translational environment at the CC to investigate and optimize how and when to combine drugs, devices, and multimodal imaging navigation. For example, "activatable" drugs can be injected in a vein or artery, then deployed directly in the tumor with needles or catheters using "medical GPS", a technique that enables the physician to navigate through the body with real-time visualization using the latest advanced imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), cone beam CT (CBCT), or ultrasound. Pre-procedural images are reused to guide devices delivering targeted therapy to the location of the disease, making the procedure more cost-effective because it doesn't require the imaging system to be physically present to take advantage of the information contained within. A prior prostate MRI, for example, can be used to help with guided biopsy or focal ablation by using a "medical GPS"-enabled needle and ultrasound, without requiring, occupying or tying up an MRI system during the procedure. In another example, a thin needle or sound waves can be used to ablate tumors and enhance targeted drug delivery. Energy sources include high-intensity focused ultrasound, freezing, microwaves, laser, and radiofrequency. Researchers also expand investigations into image-guided drug delivery or image-guided "drug painting," where the image can be used to prescribe a particular drug to a specific region, by combining targeted, image-able-able or activate-able drugs with localized energy or heat to deploy the drug within specially engineered micro- or nano-particles. The Center provides a forum to encourage collaborations among researchers and patient-care experts in medical, surgical, urologic, and radiation oncology and interventional radiology. The CC provides an exceptional environment for this type of collaborative translational research and patient care. Other major program components include the development of new image-guided methods for personalized drug investigations (or tracking tissue responses to investigational drugs during drug discovery) and first-in-human investigations involving new drugs, devices, image-guided robotic assistance, and micro- and nano-sized drug vectors. Targeted sequential biopsy is a powerful tool for drug discover or biomarker characterization. Education and cross-training is another important part of the program. Significant gaps exist between the various disciplines, between research efforts and patient care, and between diagnosis and treatment. The gaps may be integrated through advanced image methods for localized therapy. CIO trainees augment existing training programs and underline the unique translational atmosphere at the NIH, where bench-to-bedside is the rule. Specific aims include: 1. Develop training and education in Interventional Oncology 2. Develop novel image-guided methods for smart biopsy and biomarker procurement to support targeted therapeutics 3. Support patient care using novel minimally invasive Interventional Oncology techniques 4. Pursue research in novel techniques and technologies in Interventional Oncology. This program is ideally and uniquely positioned to provide an interdisciplinary environment that combines training, patient care, and translational research to accelerate progress in interventional oncology and molecularly targeted interventions. The focus is upon translational models, translational tools, and actual practical deliverables of translation of multidisciplinary paradigms that meet specific clinical needs. A recent addition of deep learning in cancer was begun with the goal of integrating digital pathology, molecular and imaging information for specific cancers and cancer interventions. CIO managed 10 preclinical protocols and > 5 clinical protocols. CIO staff are due to receive 2 PhDs this fiscal year. The CIO has trained many students, residents, fellows, PhD candidates, junior faculty, visiting scientists, engineers, and collaborating scientists, who have successfully advanced in their academic careers and are practicing in interventional radiology, radiology, urology, radiation oncology, veterinary medicine, and various senior positions in academics and industry (see mentoring appendix). The Woodchuck HCC model was established and characterized for IR. Novel software and hardware was developed for patients: (Angle-Nav, OncoNav, PercuNav, UroNav, CystoNav, RenoNav, Airwaze, BronchMEMS). Augmented reality for smartphones made it to IR clinic. The AI Resource was established for an ecosystem for cancer. Fusion guided ablation was developed and deployed for the office setting, as was prostate biopsy with needle and ultrasound totally outside of the rectum. Smartphone interventions were brought to clinic. CIO accomplished the 1st in human use of artificial intelligence for segmentation and registration during a thermal ablation procedure, Transperineal hand held ultrasound fusion biopsy without a frame or stepper stage was reduced to practice, which is becoming more main stream already with rapid adoption. In the translational animal lab, CIO characterized woodchuck molecular immune correlates for woodchuck hepatitis-induced HCC, developed a drug delivery model for drug dose painting with fusion and image-able drug eluting beads (invented and developed at the NIH CIO), developed and reported topotecan drug eluting beads in rabbit VX2 liver tumors, characterized preclinical augmentation of check point inhibition with cryo in woodchuck liver cancer and cryo and RFA in mouse tumors in vivo, Multiple devices were developed including "Angle-Nav" MEMS clip to needle, Airwaze, BronchoMEMS, CystoNav. Augmented reality via smartphone was validated. Developed small molecule checkpoint inhibitor "drug eluting immuno-beads". Artificial intelligence deep learning models for classification of COVID-19 were developed and interfaced with PACS. Ultrasound tomography for the prostate was further developed with ex vivo human trials starting FY21. Raw analysis of ultrasound signal during prostate biopsy will validate an NIH-UBC-Queens CIHR funded collaboration on ultrasound computer aided detection for prostate cancer. Artificial intelligence efforts will focus on prostate liver and kidney cancer. Recent developments with NCI include a prostate segmentation model and an "autonomous driving radiologist" for standardized and AI enhanced detection and classification of prostate MRI lesions. The CIO continues to straddle the interface between multiple disciplines and encourages members and collaborators to fertilize the interdisciplinary lands in between the labels of specific fields or specializations, in order to truly meet the team science definition of truly multi-disciplinar
介入肿瘤学中心(CIO)在NIH临床中心(CC)建立,以开发和翻译用于局部癌症治疗的图像引导技术。该中心是涉及CC和国家癌症研究所(NCI)的合作,在较小程度上。该中心借鉴了每个合作伙伴的优势,以研究成像技术和设备如何以精确针对性,最小或无创的方式诊断和处理局部癌症。它还将有助于弥合诊断和治疗之间以及新兴技术与程序医学之间的差距。 先进的成像方法已经迎来了一个早期发现癌症的时代,这些时代经常被定位在单个器官或区域,例如肝脏。介入肿瘤学通常会为癌症患者提供局部或区域治疗方案,以增加标准的全身治疗选择,例如:免疫疗法,化学疗法,手术和放射线。 CIO研究人员将利用CC的跨学科,翻译环境来调查和优化如何以及何时将药物,设备和多模式成像导航相结合。例如,“可活化”的药物可以静脉或动脉注入,然后使用“医疗GP”直接用针或导管部署在肿瘤中,该技术使医生可以使用最新的高级成像技术(例如磁性共振成像(MRI),POTITRON POTITRON ESSICTION(PET),CTICT(PET),CTICTIOD(PET),CTICTIOD(COT),CTICTION(PET),CTICTIOD(MRI),CTICTICE(MRI),计算(CT),CTICTICE(MRI),CT),CTORCH(MRI),CTORCH(MRI),CT) (CBCT)或超声波。重新使用手术前图像来指导将有针对性治疗的设备带到疾病的位置,从而使过程更具成本效益,因为它不需要物理上存在成像系统以利用其中包含的信息。例如,可以通过使用“医疗GPS”的针和超声检查,而无需在手术过程中使用“医疗GPS”针和超声来帮助指导活检或局灶性消融。在另一个示例中,可以使用细针或声波来消融肿瘤并增强靶向药物的递送。能源包括高强度聚焦超声,冷冻,微波,激光和射频。研究人员还扩大了对图像引导的药物输送或图像引导的“药物绘画”的研究,其中图像可通过将靶向的,可图像的或可激活的药物与局部能量或热量相结合,或者将特定的药物与特定区域开出特定的药物,或者将药物与特殊工程的微型或纳米区域中部署。该中心提供了一个论坛,以鼓励研究人员和患者护理专家在医学,外科,泌尿科和放射肿瘤学和介入放射学方面的合作。 CC为此类协作转化研究和患者护理提供了一个非凡的环境。其他主要程序组件包括开发用于个性化药物研究的新图像指导方法(或在药物发现期间跟踪组织对研究药物的反应)以及涉及新药,设备,图像引导的机器人援助以及微型和纳米尺寸的药物矢量的首次人类研究。靶向顺序活检是药物发现或生物标志物表征的强大工具。教育和交叉培训是该计划的另一个重要组成部分。各个学科,研究工作和患者护理以及诊断与治疗之间存在显着差距。可以通过用于局部治疗的高级图像方法整合了差距。 CIO受训人员增强了现有的培训计划,并强调了NIH的独特翻译氛围,而在该计划中,卧铺是规则。 具体目的包括:1。开发介入肿瘤学中的培训和教育2。开发新颖的图像引导方法,用于智能活检和生物标志物采购以支持有针对性的治疗方法3.使用新颖的浸润性介入性肿瘤学技术4。在介入介入的新技术和技术方面使用新颖的微创介入肿瘤学技术来支持患者护理。理想情况下,该计划是提供跨学科环境,结合培训,患者护理和翻译研究,以加速介入介入肿瘤学和分子靶向干预措施的进展。重点是翻译模型,翻译工具和实际实用的可满足特定临床需求的多学科范例的翻译。最近在癌症中增加了深度学习的目的是将数字病理学,分子和成像信息整合到特定的癌症和癌症干预措施中。 CIO管理了10种临床前方案和> 5个临床方案。 CIO工作人员将在这个财政年度获得2个博士学位。 CIO培训了许多学生,居民,研究员,博士学位候选人,初级教师,科学家,工程师和合作的科学家,他们在学术职业中成功进步,并从事介入放射学,放射学,泌尿外科,放射学,放射肿瘤学,兽医学,兽医医学以及各种高级职位的学术和行业(请参阅学术和培训)。建立了Woodchuck HCC模型,并为IR进行了特征。新颖的软件和硬件是为患者开发的:(Angle-NAV,OnConav,Percunav,Uronav,Cystonav,Renonav,Airwaze,Oronchmems)。智能手机的增强现实进入了IR诊所。为癌症生态系统建立了AI资源。 Fusion指导的消融是开发和部署的,用于办公室环境,前列腺活检和针对直肠外部的超声检查和超声检查也是如此。智能手机干预被带到诊所。 CIO在热消融过程中使用人工智能进行分割和注册的第一个实现了第一个,而没有框架或步进阶段的经式手工持有超声融合活检被降低到实践,而随着采用的快速采用,这已经成为越来越多的主流。 在转化动物实验室中,CIO表征了木屋分子免疫相关的木肝炎诱导的HCC,开发了一种用于融合和图像剂量绘画的药物输送模型,可融合和可图像的药物洗脱珠(在NIH CIO发明和开发),开发和报告,并报告了在Rabbit Vx2 liver thamors interlinized Persination in temallized themigation tharminized themigation tharminized themigation interification interrinized themoration interrinight of Checkiation vx2 liver themigation interification interifation。在体内小鼠肿瘤中的木结肝癌,冷冻和RFA,开发了多个设备,包括“ Angle-Nav” MEMS夹子夹至针头,气动,支气管,支气管,Cystonav。通过智能手机增强现实已得到验证。开发的小分子检查点抑制剂“洗脱免疫珠”。人工智能的深度学习模型用于Covid-19的分类模型并与PACS连接。从FY21开始,通过体内人体试验进一步开发了前列腺的超声断层扫描。前列腺活检期间超声信号的原始分析将验证NIH-UBC QUASES CIHR资助的超声计算机辅助检测前列腺癌的合作。人工智能工作将集中于前列腺肝和肾癌。 NCI的最新发展包括前列腺分割模型和用于标准化和AI的“自主驾驶放射科医生”,并增强了对前列腺MRI病变的检测和分类。 CIO继续跨越多个学科之间的界面,并鼓励成员和合作者在特定领域或专业的标签之间施肥跨学科的土地,以便真正地满足团队科学的真正多学科定义

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10022065
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10691768
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10262633
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10262659
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10920175
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8952855
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10691770
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Optical and electromagnetic tracking guidance for hepatic interventions
肝脏干预的光学和电磁跟踪指导
  • 批准号:
    10691780
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10920176
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
  • 批准号:
    62372469
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
  • 批准号:
    82373219
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
  • 批准号:
    42307523
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
  • 批准号:
    32300701
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
  • 批准号:
    82302332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

University of Wisconsin Prostate SPORE
威斯康星大学前列腺孢子
  • 批准号:
    10555398
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
  • 批准号:
    10606234
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
  • 批准号:
    10833895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了