Molecular Analysis of Chromosome Segregation
染色体分离的分子分析
基本信息
- 批准号:10093081
- 负责人:
- 金额:$ 73.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAneuploidyAvidityBinding ProteinsCell DeathCell divisionChromosome SegregationChromosomesCongenital AbnormalityDNA BindingExhibitsGenetic MaterialsGeometryIndividualKinetochoresLeadLifeLongevityMeasurementMicrotubulesMitosisMitotic spindleMolecular AnalysisMolecular MachinesMorphogenesisOrganellesPloidiesProcessPropertyProteinsSignal TransductionSumTestingWorkbasechromosome conformation capturedaughter celldisabilityin vivoreconstitutionrepairedresponsesynergismtransmission processtumorigenesis
项目摘要
Project Summary
Life depends on the accurate transmission of genetic material at each cell division. Errors in this process
lead to aneuploidy, which is implicated in oncogenesis, birth defects and cell death. Duplicated
chromosomes are captured and segregated by a microtubule-based molecular machine, the mitotic
spindle. The spindle is bipolar and each spindle pole carries an exact complement of chromosomes to
each daughter cell. During mitosis, microtubules nucleate from the poles and capture and organize the
chromosomes. Kinetochores, large multiprotein organelles located at the centromeric DNA, bind the
microtubules and anchor the chromosomes to the poles. Our work focuses on each end of the
microtubule, the spindle poles and the kinetochores.
Spindle morphogenesis requires spatially controlled microtubule nucleation. Using a combination of
reconstitution and in vivo analysis, we will test hypotheses that address how microtubule nucleation is
activated and spatially regulated.
Kinetochores attach chromosomes to microtubules with a striking combination of strength and plasticity.
The attachments are mobile and robust under tension, but can also rapidly destabilize in response to
regulatory signals. As such, the kinetochore is at the center of an error correction mechanism that repairs
incorrect attachments sensed by a lack of ‘proper’ tension. The identification of the proteins that are
under tension, the measurement of the strength of the linkages and the requirements for the full strength
of attachments are together the second focus of this project.
We have found that individually no kinetochore protein binds the microtubule with strength or longevity.
To reconstitute the full strength of microtubule attachment exhibited by native kinetochores requires
synergy between proteins in contact with the microtubule with proteins within the interior of the
kinetochore. We will use a reconstitution-based approach and in vivo analysis to test the contribution of
affinity, avidity and geometry to this synergy. In this way we will understand how the whole achieves
greater properties than the sum of the parts. In addition, by exploiting our reconstituted kinetochore, we
will test hypotheses for how the tension signal that triggers error correction is transmitted from the
kinetochore and received by the repair mechanisms.
项目摘要
生命取决于在此过程中遗传材料的准确传播。
导致非整倍性,这与肿瘤发生,出生缺陷和细胞死亡有关。
染色体被基于微管的分子机捕获和分离有丝分裂
主轴。
每个女儿细胞。
染色体。
微管并将染色体锚定在极点。
微管,主轴杆和kinetchores。
纺锤形态发生需要空间控制的微管核。
重新结构和体内分析,我们将测试假设的假设,以解决微管核的含义。
激活并在空间上进行了规则。
Kinetchores将染色体连接到微管上,具有强度和可塑性的惊人组合。
在紧张局势下,Atachments是可移动和健壮的
监管信号。
缺乏“适当”的蛋白质,不正确
在紧张局势下,链接的测量和对全力的要求
atchments是该项目的第二个重点。
我们发现单个NO Kinetchore蛋白可以以强度或寿命结合微管。
重建本机Kinetchores展示的微管附件的全部强度
与微管接触的蛋白质之间的协同作用与蛋白质内部内部的蛋白质
Kinetchore。
与协同作用的亲和力,亲和力和几何形状。
除了利用我们的侦察吗?
将测试假设的张力信号如何触发从您传输的误差校正
Kinetchore并通过维修机制接收。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trisha N. Davis其他文献
Genetic analysis of yeast spindle pole bodies.
酵母纺锤体极体的遗传分析。
- DOI:
10.1016/s0091-679x(01)67007-9 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Trisha N. Davis - 通讯作者:
Trisha N. Davis
The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components.
酿酒酵母纺锤体杆体:核心部件的结构和组装。
- DOI:
10.1016/s0070-2153(99)49006-4 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Susan E. Francis;Trisha N. Davis - 通讯作者:
Trisha N. Davis
Trisha N. Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trisha N. Davis', 18)}}的其他基金
Comprhensive Biology: Exploiting the Yeast Genome
综合生物学:利用酵母基因组
- 批准号:
8416531 - 财政年份:2012
- 资助金额:
$ 73.08万 - 项目类别:
ISOTOPE SIGNATURE BASED IDENTIFICATION OF CROSSLINKED PEPTIDES BY MS
通过 MS 基于同位素特征的交联肽鉴定
- 批准号:
8171348 - 财政年份:2010
- 资助金额:
$ 73.08万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
PAIRS: Validating telomerase reverse transcriptase (TERT) as an intrinsic vulnerability toward sensitizing cancer to radiation
配对:验证端粒酶逆转录酶 (TERT) 作为癌症对辐射敏感的内在脆弱性
- 批准号:
10718390 - 财政年份:2023
- 资助金额:
$ 73.08万 - 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
- 批准号:
10535616 - 财政年份:2022
- 资助金额:
$ 73.08万 - 项目类别:
Defining the effect of centromere/kinetochore associations on genome instability
定义着丝粒/着丝粒关联对基因组不稳定性的影响
- 批准号:
10385959 - 财政年份:2021
- 资助金额:
$ 73.08万 - 项目类别:
Investigating the Molecular Architecture of the Synaptonemal Complex and its Role in Crossover Formation.
研究联会复合体的分子结构及其在交叉形成中的作用。
- 批准号:
10220868 - 财政年份:2020
- 资助金额:
$ 73.08万 - 项目类别: