Investigating the Molecular Architecture of the Synaptonemal Complex and its Role in Crossover Formation.
研究联会复合体的分子结构及其在交叉形成中的作用。
基本信息
- 批准号:10220868
- 负责人:
- 金额:$ 4.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinity ChromatographyAneuploidyAnimal ModelAppearanceArchitectureBehaviorBiochemicalC-terminalCaenorhabditis elegansCell divisionCellsCellular biologyCharacteristicsChromatinChromosome PairingChromosome SegregationChromosomesCoiled-Coil DomainDefectDevelopmentDiploid CellsDiseaseDown SyndromeElementsEnsureEnvironmentEukaryotaFailureFosteringGenerationsGeneticGenetic Crossing OverGenetic RecombinationGenetic VariationGenomeGerm CellsGoalsHaploidyHigher Order Chromatin StructureHomologous GeneHumanInfertilityLeadLearningLinkLiquid substanceMediatingMeiosisMolecularNematodaOrganismPhosphorylation SitePlayPolymersPositioning AttributeProcessProductionProgram DevelopmentPropertyProphaseProtein BiochemistryProtein CProteinsRecombinant ProteinsRegulationReproductive BiologyResearchRoleScientistSignal TransductionSpontaneous abortionStretchingStructureSynapsesSynaptonemal ComplexSyp proteinTailTeacher Professional DevelopmentTertiary Protein StructureUniversitiesWorkcareer developmentchromosome number abnormalitydevelopmental diseasegenetic informationinsightnovelprotein complexprotein protein interactionprotein structurescaffoldskillsstoichiometrytransmission process
项目摘要
Project Summary
In sexually reproducing organisms, inheritance of a stable genome relies on meiosis, a specialized cell
division that produces haploid gametes from a diploid cell. Defects in this process lead to abnormal chromosome
numbers, also known as aneuploidy, and this is a major cause of infertility and developmental disorders such as
Down Syndrome. Successful segregation of chromosomes during meiosis requires that homologs pair, synapse,
and form crossovers. The process of synapsis is defined by the formation of a proteinaceous structure called the
synaptonemal complex (SC), which links two homologs together and serves as a scaffold for crossover
recombination. The SC consists of two parallel stretches of chromatin-associated axial elements and a central
region comprised of transverse elements, which connect homologs in a zipper-like fashion. Despite its structural
conservation across most eukaryotes, little is known about the mechanisms governing SC assembly and its
functions. The goal of this proposal is to determine the structure and functions of the SC using the nematode C.
elegans as a model organism. The transverse elements in C. elegans are comprised of at least four coiled-coil
proteins, SYP-1, SYP-2, SYP-3, and SYP-4, which are interdependent for their assembly. I have recently
discovered two new components of the SC, SYP-5 and SYP-6, which are paralogous to each other and play
redundant roles in synapsis. In Aim 1, I will extend these findings and determine the significance of highly
conserved disordered C-termini of SYP-5/6. Recent evidence in C. elegans suggests that the SC has liquid-like
properties, thereby enabling long-range signal transduction to mediate a chromosome-wide crossover control. I
will examine whether the C-terminal tails of SYP-5/6 contribute to this dynamic behavior of the SC and crossover
regulation. In Aim 2, I will determine the biochemical characteristics of the SC using the SYP protein complexes
purified from C. elegans as well as the recombinant proteins. I will determine the stoichiometry and protein-
protein interactions among the SC components and determine their propensity and requirements to form
polymers or liquid-like droplets. Overall, this work will provide key insights into the fundamental principles of SC
organization and its functions, which will be broadly applied across species, including humans. Through the work
proposed in this application, I will learn key experimental skills in genetics, cell biology, and protein biochemistry.
Combined with the state-of-the-art research environment, excellent training faculty, and career development
programs, Johns Hopkins University is an ideal place to foster my development into an independent scientist.
项目概要
在有性生殖生物体中,稳定基因组的遗传依赖于减数分裂,这是一种特殊的细胞
从二倍体细胞产生单倍体配子的分裂。这个过程的缺陷会导致染色体异常
数字,也称为非整倍体,这是不孕和发育障碍的主要原因,例如
唐氏综合症。减数分裂过程中染色体的成功分离需要同源物配对、突触、
并形成交叉。突触的过程是由称为“突触”的蛋白质结构的形成来定义的。
联会复合体 (SC),将两个同源物连接在一起并充当交叉的支架
重组。 SC 由两条平行的染色质相关轴向元件和一个中央部分组成
由横向元件组成的区域,横向元件以拉链状方式连接同系物。尽管其结构
大多数真核生物的保护性,人们对 SC 组装及其控制机制知之甚少。
功能。该提案的目标是利用线虫 C 确定 SC 的结构和功能。
线虫作为模式生物。秀丽隐杆线虫的横向元件由至少四个螺旋线圈组成
蛋白质 SYP-1、SYP-2、SYP-3 和 SYP-4,它们的组装是相互依赖的。我最近有
发现了 SC 的两个新组件 SYP-5 和 SYP-6,它们彼此是旁系同源的并发挥作用
突触中的冗余角色。在目标 1 中,我将扩展这些发现并确定高度的重要性
SYP-5/6 保守的无序 C 末端。最近在秀丽隐杆线虫中的证据表明 SC 具有液体状
特性,从而使远程信号转导能够介导染色体范围的交叉控制。我
将检查 SYP-5/6 的 C 末端尾部是否有助于 SC 和交叉的动态行为
规定。在目标 2 中,我将使用 SYP 蛋白复合物确定 SC 的生化特征
从秀丽隐杆线虫以及重组蛋白中纯化。我将确定化学计量和蛋白质-
SC 成分之间的蛋白质相互作用,并确定它们形成的倾向和要求
聚合物或液体状液滴。总的来说,这项工作将为 SC 的基本原理提供重要的见解
组织及其职能,将广泛应用于包括人类在内的各个物种。通过工作
在这个应用程序中,我将学习遗传学、细胞生物学和蛋白质生物化学方面的关键实验技能。
结合最先进的研究环境、优秀的培训师资队伍和职业发展
约翰·霍普金斯大学是培养我成为一名独立科学家的理想场所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hurlock其他文献
Matthew Hurlock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Mpro蛋白靶向亲和层析定向挖掘白及属中药抗新冠肺炎活性芪类成分
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
原子水平一体化构建腺相关病毒亲和层析介质及分子设计基础
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于凝集素芯片与凝集素亲和层析技术的参芪扶正注射液联合 IFN-α对肝癌切除术后复发转移干预机制的糖蛋白组学研究
- 批准号:81803954
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于生物质谱和亲和层析策略的大肠杆菌O157: H7特异性抗体的靶蛋白及多肽抗原表位的鉴定与研究
- 批准号:31701680
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
治疗SLE复方中的抗炎物质分离及对狼疮活动干预机制的研究
- 批准号:81673857
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Assembly and Maintenance of Centromeres in Filamentous Fungi
丝状真菌着丝粒的组装和维护
- 批准号:
8496084 - 财政年份:2011
- 资助金额:
$ 4.49万 - 项目类别:
Assembly and Maintenance of Centromeres in Filamentous Fungi
丝状真菌着丝粒的组装和维护
- 批准号:
8690911 - 财政年份:2011
- 资助金额:
$ 4.49万 - 项目类别:
Assembly and Maintenance of Centromeres in Filamentous Fungi
丝状真菌着丝粒的组装和维护
- 批准号:
8328705 - 财政年份:2011
- 资助金额:
$ 4.49万 - 项目类别:
Assembly and Maintenance of Centromeres in Filamentous Fungi
丝状真菌着丝粒的组装和维护
- 批准号:
8087456 - 财政年份:2011
- 资助金额:
$ 4.49万 - 项目类别:
Ubiquitin-dependent mechanisms of tissue-specific cell cycle control
组织特异性细胞周期控制的泛素依赖性机制
- 批准号:
7431182 - 财政年份:2007
- 资助金额:
$ 4.49万 - 项目类别: