Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
基本信息
- 批准号:10064645
- 负责人:
- 金额:$ 45.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-03 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlpha RhythmAnteriorAnxietyAreaBrainCognitiveCommunicationDataDecision MakingDorsalEnvironmentEvolutionFrequenciesFunctional disorderFutureGoalsGrantHabitsHippocampus (Brain)LeadLearningMapsMeasuresMediatingMental DepressionMethodologyMethodsModelingMood DisordersNeuronsObsessive-Compulsive DisorderPathway interactionsPerformancePost-Traumatic Stress DisordersPrimatesProcessPropertyPsychiatryPsychological reinforcementPsychopathologyResearchRewardsRodentRoleSchizophreniaSignal TransductionStimulusStructureSymptomsSystemTestingTherapeuticTherapeutic InterventionTheta RhythmWorkaddictionbaseelectrical microstimulationenvironmental changeflexibilityhigh dimensionalityimprovedlearning strategymicrostimulationneuromechanismneuropsychiatric disorderrelating to nervous systemresponseskillstime use
项目摘要
Project summary (<30 lines)
Dysfunction of both the hippocampus and the orbitofrontal cortex have been implicated in a wide variety of
neuropsychiatric disorders, including obsessive-compulsive disorder, mood disorders and addiction. However,
their exact contribution remains unclear. A major problem is that most research on hippocampal mechanisms
is derived from rodent work. However, the structure of the hippocampus has undergone dramatic changes
across the course of evolution, particularly in those parts associated with psychopathologies. This necessitates
the use of primate models, but there have been few studies of hippocampus in the primate. The current grant
will investigate the neuronal properties of hippocampus in the primate and determine how it interacts with
orbitofrontal cortex.
The theoretical framework that we will employ is derived from computational psychiatry, with a particular focus
on how the computational processes underlying reinforcement learning might contribute to neuropsychiatric
disease. Our hypothesis is that both hippocampus and orbitofrontal cortex make critical contributions to
model-based reinforcement learning, whereby hippocampus is responsible for constructing the cognitive map
that instantiates the neural representation of the task model, and orbitofrontal cortex is responsible for using
the cognitive map to generate reward predictions that can be used to guide decision-making. To test this
hypothesis, we will use a combination of high-channel count neuronal recordings and electrical
microstimulation.
We will record from single neurons in the hippocampus during performance of a reward-based learning task
and examine whether hippocampal neurons show value place tuning. We will then examine how hippocampus
might communicate this information to orbitofrontal cortex by recording from both structures simultaneously.
Our prediction is that this communication will be mediated via synchronization of theta rhythms. However, such
measures are correlative. Establishing a causal role for neural rhythms has proven challenging, since it is
difficult to manipulate a specific neuronal rhythm without affecting other neuronal rhythms and/or neuronal
firing rates. We have recently developed a closed-loop approach, which involves recording rhythms in real-time
and using those signals to control the application of electrical microstimulation. This allows us to disrupt a
neuronal rhythm of a specific frequency. We will use this method to examine whether there is a causal role for
the theta oscillation in reward-based learning.
Taken together, the results of this proposal will provide convergent correlative and causal evidence for the role
of hippocampus and orbitofrontal cortex in reward-based learning and the mechanism by which they
communicate. This will help lay the groundwork for future potential therapeutic approaches for frontolimbic
dysfunction based on closed-loop microstimulation.
项目摘要(<30行)
海马和眶额皮质的功能障碍都与多种多样
神经精神疾病,包括强迫症,情绪障碍和成瘾。然而,
他们的确切贡献尚不清楚。一个主要问题是,大多数关于海马机制的研究
源自啮齿动物的工作。但是,海马的结构发生了巨大变化
在整个进化过程中,特别是在与精神病理学相关的那些部分。这是必要的
灵长类动物模型的使用,但是在灵长类动物中对海马的研究很少。当前的赠款
将研究灵长类动物中海马的神经元特性,并确定其如何与
眶额皮质。
我们将采用的理论框架来自计算精神病学,特别重点
关于强化学习的基础计算过程如何有助于神经精神病学
疾病。我们的假设是海马和眶额皮质都为
基于模型的强化学习,海马负责构建认知图
实例化任务模型的神经表示,Orbitrontal Cortex负责使用
认知图生成可用于指导决策的奖励预测。测试这个
假设,我们将使用高通道计数神经元记录和电气的组合
微刺激。
在执行基于奖励的学习任务期间,我们将从海马的单个神经元中记录
并检查海马神经元是否显示值位置调节。然后,我们将检查海马
可以通过同时从两个结构录制来将此信息传达给Orbitrontal Cortex。
我们的预测是,这种交流将通过theta节奏的同步来介导。但是,这样
措施是相关的。确立神经节律的因果作用已被证明是具有挑战性的,因为它是
难以操纵特定的神经元节奏,而不会影响其他神经元节奏和/或神经元
发射率。我们最近开发了一种闭环方法,涉及实时记录节奏
并使用这些信号来控制电微刺激的应用。这使我们可以破坏
特定频率的神经元节奏。我们将使用此方法检查是否有因果关系
基于奖励的学习中的theta振荡。
综上所述,该提案的结果将为该角色提供收敛的相关和因果证据
基于奖励的学习中的海马和眶额皮质的
交流。这将有助于为未来的额叶骨化方法奠定基础
基于闭环微刺激的功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joni D Wallis其他文献
Joni D Wallis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joni D Wallis', 18)}}的其他基金
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10297842 - 财政年份:2019
- 资助金额:
$ 45.5万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10380534 - 财政年份:2019
- 资助金额:
$ 45.5万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10516049 - 财政年份:2019
- 资助金额:
$ 45.5万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10724154 - 财政年份:2019
- 资助金额:
$ 45.5万 - 项目类别:
Frontostriatal Rhythms Underlying Reinforcement Learning.
强化学习背后的额纹状体节律。
- 批准号:
10401263 - 财政年份:2018
- 资助金额:
$ 45.5万 - 项目类别:
The Unlearning of Stimulus-Outcome Associations through Intracortical Microstimulation
通过皮质内微刺激忘记刺激-结果关联
- 批准号:
9262185 - 财政年份:2016
- 资助金额:
$ 45.5万 - 项目类别:
The role of dopamine in anterior cingulate prediction errors
多巴胺在前扣带回预测误差中的作用
- 批准号:
8638633 - 财政年份:2014
- 资助金额:
$ 45.5万 - 项目类别:
相似海外基金
A serotonergic circuit controlling the circadian rhythm in Drosophila olfactory learning
控制果蝇嗅觉学习昼夜节律的血清素回路
- 批准号:
10509755 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10297842 - 财政年份:2019
- 资助金额:
$ 45.5万 - 项目类别:
Mid-frontal delta/theta rhythms and cognitive control in PD
PD 中额叶 delta/theta 节律和认知控制
- 批准号:
10187663 - 财政年份:2017
- 资助金额:
$ 45.5万 - 项目类别:
EEG/fMRI Controlled TMS Real-time Neural Feedback in Anti-Depressive Treatment
EEG/fMRI 控制的 TMS 实时神经反馈在抗抑郁治疗中的应用
- 批准号:
9056572 - 财政年份:2015
- 资助金额:
$ 45.5万 - 项目类别:
EEG/fMRI Controlled TMS Real-time Neural Feedback in Anti-Depressive Treatment
EEG/fMRI 控制的 TMS 实时神经反馈在抗抑郁治疗中的应用
- 批准号:
8874646 - 财政年份:2015
- 资助金额:
$ 45.5万 - 项目类别: