Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences

僵硬与柔软环境中遗传变化的活细胞报告 - 原因

基本信息

  • 批准号:
    10608069
  • 负责人:
  • 金额:
    $ 77.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Project Abstract Live cell reporters of genetic changes in stiff vs soft surroundings – causes & consequences Solid tumors are often palpably stiff and more constrained in 3D growth than ‘liquid’ hematopoietic tumors. Extensive sequencing of dozens of cancer types further indicates that solid tumors within stiff tissues exhibit many more genetic changes than liquid and soft-tissue tumors [Pfeifer 2017]. Our first hypothesis is a mechano-genetics hypothesis, namely genetic changes are caused in part by the mechanics of the tumor or tissue micro-environment. A key limitation of current sequencing methods is that they require killing cells to isolate the DNA, which prevents tracking a cell before, during, and after a genetic change. A new method is needed to track genetic changes in living cells under diverse biophysical stresses. Our second hypothesis is that gene editing can be used to enable tracking some changes in the genetics of single cells in real-time. Preliminary results from a new approach already support both hypotheses. RFP (red fluorescent protein) is fused to a single allele of an abundant constitutive gene in cancer cells or normal cells. For appropriate genes, we find that RFP-neg cells have lost all or part of the edited chromosome, using methods that range from single cell DNA-seq to allele-specific PCR. For the one edited chromosome that has been studied most deeply (of three), the RFP-neg cells divide and pass on the genetic change, and they also exhibit a ‘go-and-grow’ phenotype consistent with partial loss of a key tumor suppressor. In solid tumor xenografts that start with freshly sorted RFP-pos cells, the fraction of RFP-neg cells scales strongly with the number of cell divisions, unlike 2D cultures, and 3D imaging further shows that (i) dividing cells are flattened in vivo, and (ii) interphase nuclei with high curvature tend to rupture and exhibit high DNA damage. In reductionist 3D culture studies, confinement and constriction likewise increase GFP-neg cell numbers. The preliminary results directly support our mechano-genetics hypothesis. We will replicate and extend our preliminary results both in vitro and in vivo with the ultimate goals of identifying mechanically modulated pathways of chromosome loss and consequences for phenotype. For relevance to patients, the in vivo studies will include liver cancer patient derived xenografts (PDX) that are gene edited and grown in liver as well as softer and stiffer sites.
项目摘要 僵硬环境与软环境中基因变化的活细胞产生者——原因和后果 与“液体”造血肿瘤相比,实体瘤通常明显僵硬,且 3D 生长受到更多限制。 对数十种癌症类型的广泛测序进一步表明,僵硬组织内的实体瘤表现出 比液体和软组织肿瘤更多的遗传变化 [Pfeifer 2017]。 机械遗传学假说,即遗传变化部分是由肿瘤或肿瘤的力学引起的 当前测序方法的一个关键限制是它们需要杀死细胞才能进行。 分离DNA,防止在基因改变之前、期间和之后追踪细胞。 我们需要跟踪活细胞在不同生物物理压力下的遗传变化。 基因编辑可用于实时跟踪单细胞遗传学的一些变化。 新方法的初步结果已经支持这两种假设(红色荧光)。 蛋白质)与癌细胞或正常细胞中丰富的组成基因的单个等位基因融合。 适当的基因,我们发现 RFP-neg 细胞已经丢失了全部或部分编辑的染色体,使用方法 范围从单细胞 DNA 测序到等位基因特异性 PCR,适用于已编辑的一条染色体。 研究最深入的(三者中),RFP-neg 细胞分裂并传递基因变化,并且它们还表现出 “生长”表型与实体瘤异种移植物中关键肿瘤抑制因子的部分丧失一致。 从新分选的 RFP-pos 细胞开始,RFP-neg 细胞的比例随细胞数量的增加而强烈变化 与 2D 培养物不同,3D 成像进一步表明 (i) 分裂细胞在体内变平,并且 (ii) 在还原性 3D 培养中,具有高曲率的间期核容易破裂并表现出高 DNA 损伤。 研究表明,限制和收缩同样会直接增加 GFP-neg 细胞的数量。 支持我们的机械遗传学假设。 我们将在体外和体内复制和扩展我们的初步结果,最终目标是 识别染色体丢失的机械调节途径及其对表型的影响。 与患者相关,体内研究将包括肝癌患者来源的异种移植物(PDX) 基因编辑并在肝脏以及较软和较硬的部位生长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis E. Discher其他文献

Probing the structure of PEGylated-lipid assemblies by coarse-grained molecular dynamics
通过粗粒度分子动力学探测聚乙二醇化脂质组装体的结构
  • DOI:
    10.1039/c3sm52290c
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    篠田 渉;Dennis E. Discher;Michael L. Klein;Sharon M. Loverde
  • 通讯作者:
    Sharon M. Loverde
Glassy worm-like micelles in solvent and shear mediated shape transitions
  • DOI:
    10.1039/c8sm00080h
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kaushik Chakraborty;Kandaswamy Vijayan;Andre E. X. Brown;Dennis E. Discher;Sharon M. Loverde
  • 通讯作者:
    Sharon M. Loverde

Dennis E. Discher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis E. Discher', 18)}}的其他基金

Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
  • 批准号:
    10626283
  • 财政年份:
    2023
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10373929
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10092733
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10737802
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10594852
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology: Administrative Core
肝癌:癌前硬化、膜转导、
  • 批准号:
    8866922
  • 财政年份:
    2015
  • 资助金额:
    $ 77.9万
  • 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology
肝癌:癌前硬化、膜转导、
  • 批准号:
    8866921
  • 财政年份:
    2015
  • 资助金额:
    $ 77.9万
  • 项目类别:
Nuclear Mechanics varies with Tissue Mechanics & Regulates Cytoskeleton
核力学随组织力学而变化
  • 批准号:
    8928873
  • 财政年份:
    2015
  • 资助金额:
    $ 77.9万
  • 项目类别:
Project 3: Nuclear Rheology & Stability in Cancer
项目3:核流变学
  • 批准号:
    8866927
  • 财政年份:
    2015
  • 资助金额:
    $ 77.9万
  • 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology
肝癌:癌前硬化、膜转导、
  • 批准号:
    9091502
  • 财政年份:
    2015
  • 资助金额:
    $ 77.9万
  • 项目类别:

相似国自然基金

等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
  • 批准号:
    32370714
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
  • 批准号:
    82300353
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
  • 批准号:
    82302575
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
  • 批准号:
    32302535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
  • 批准号:
    10751361
  • 财政年份:
    2023
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10373929
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10092733
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
  • 批准号:
    10737802
  • 财政年份:
    2021
  • 资助金额:
    $ 77.9万
  • 项目类别:
Intracranial Vascular Compliance as an Early Imaging Marker of Alzheimer's Disease
颅内血管顺应性作为阿尔茨海默病的早期成像标志
  • 批准号:
    10163760
  • 财政年份:
    2017
  • 资助金额:
    $ 77.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了