Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
基本信息
- 批准号:10019735
- 负责人:
- 金额:$ 154.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-11 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:10 year oldAdolescentAdultAgeAnesthesia proceduresAwardBackBehavioralBiofeedbackBrainBrain imagingChildChildhoodClient satisfactionClinicalClinical ResearchCodeCognitiveColorComputer softwareDataDeliriumDiagnosisDiagnosticElderlyEnsureFaceFeedbackFeedsFunctional Magnetic Resonance ImagingFundingGoalsGrantHeadHumanImageImaging technologyImpaired cognitionInstitutionInvestigationKineticsLeftLegal patentLongevityMRI ScansMagnetic Resonance ImagingMeasurementMeasuresMedicalMethodsMonitorMorphologic artifactsMotionMovementNational Institute of Mental HealthOutputParticipantPatientsPhasePhysiciansPredispositionQuestionnairesRadiationRandomizedRecoveryResearchResearch SubjectsResolutionRewardsRiskRobin birdRunningSafetySamplingScanningSedation procedureSeedsSmall Business Technology Transfer ResearchSystemTechnologyTestingTimeTrainingTranslatingUnited StatesVisualWorkawakebasebiobehaviorcognitive developmentcohortcombatconnectomecostcost estimatedata qualityeffectiveness evaluationexperiencefallsfunctional MRI scanhigh resolution imagingimprovedneuroimagingneuropsychiatric disordernon-invasive monitornovelpreventproduct developmentprototyperesearch studysedativesoftware developmenttoolvisual feedbackvolunteerwasting
项目摘要
Project Abstract/Summary
The goal of this STTR application is to deliver a brain MRI technology that feeds back head motion
measurements derived from our Framewise Integrated Real-Time MRI Monitoring (FIRMM) to MRI scan
participants in order to reduce head motion via behavioral training. Because MRI scanning produces high-
resolution images and does not expose patients to radiation, it has become an immensely valuable diagnostic
tool, particularly for imaging the brain. Last year, in the United States alone, there were over 8 million brain
MRIs, costing an estimated $20-30 billion. Unfortunately, brain MRIs are limited by the fact that head motion
during the scan can cause the resulting images to be suboptimal or even unusable. An estimated 20% of all
brain MRIs are ruined by motion, wasting $2-4 billion annually. Currently, there are two predominant strategies
to combat head motion: repeat scanning and anesthesia, both of which are inadequate. Repeat scanning,
which consists of acquiring extra images (to ensure enough usable ones were acquired), increases scanning
time and cost, and can result in too few usable images or unnecessary extra images. Anesthesia, which is
given to patients who are likely to move (such as young children), presents a serious safety risk and is
sometimes administered unnecessarily (i.e. the patient could hold still without anesthesia). Anesthesia is never
an option for functional MRI (fMRI), which requires participants to be awake.
The software-based FIRMM-biofeedback solution proposed in this grant uses MR images (as they are being
collected) to compute a patient’s head motion in real time during an MRI scan. The availability of real time
motion information will enable more informed anesthesia use and reduce excess scanning, making these
methods safer and more efficient. Armed with real time motion information, scan operators will know exactly
how many usable images have been acquired, preventing the acquisition of too many or too few extra images.
Additionally, providing physicians with quantitative information about patient motion will allow them to make an
informed decision regarding anesthesia, preventing unnecessary sedation.
The proposed solution focuses on a completely new biobehavioral method for combating head motion: subject
biofeedback. The technology can translate the head motion information into age-appropriate, visual
biofeedback for the scan participant. By providing feedback to patients and research subjects, the FIRMM-
biofeedback technology helps both pediatric and adult patients remain more still, improving image quality. The
proposed research focuses on delivering proof-of-concept for FIRMM-biofeedback (Phase I) and building and
validating a product version of FIRMM-biofeedback (Phase II). The FIRMM-biofeedback technology provides
patients and research subjects with real time head motion information, with the goal of making MR scans safer,
faster, more enjoyable and less expensive.
项目摘要/摘要
STR应用程序的目标是提供脑部MRI技术,以使头运动反馈
从我们的框架集成的实时MRI监测(FIRMM)到MRI扫描得出的测量值
为了通过行为训练减少头部运动。
分辨率图像,不会使患者暴露于辐射
工具,特别是用于成像大脑。
MRI不幸的是,大脑MRI的成本估计为20亿美元。
在扫描过程中,可以导致产生的图像次优甚至不可用。
大脑MRI被运动毁了,每年浪费2-4亿美元。
对抗头部运动:重复扫描和麻醉,这两者都不足够。
包括获取额外的图像
时间和成本,可能会导致太少的可用图像或不必要的额外图像。
给予可能移动的患者(例如幼儿)
有时会施加不必要的(即,患者可以保持静止不动,而无需麻醉)
功能性MRI(fMRI)的选项,它要求参与者清醒。
该赠款中基于软件的Firmm-Biofeack Backback解决方案使用MR图像(因为它们正在
收集)在MRI扫描中实时计算患者的头部运动。
运动信息信息将使更多明智的麻醉使用并减少多余的扫描,从而使这些
方法更安全,效率更高。
获取了多少个可用图像)
此外,向医生提供有关动作的定量信息将使他们能够做一个
关于麻醉的明智决定,防止不必要的煽动。
支撑的解决方案着重于一种打击头运动的新型生物行为方法:受试者
生物反馈。
扫描参与者的生物反馈。
生物反馈技术可帮助小儿患者保持静止,从而提高图像质量
支撑研究的重点是Firmm-Biofeepback(I阶段)和建筑物的概念证明
验证firmm-biofeatback的产品版本(第二阶段)。
具有实时头部运动信息的患者和研究对象,目的是使MR扫描更安全,
更快,更有趣,更便宜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd William Deckard其他文献
Todd William Deckard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd William Deckard', 18)}}的其他基金
Solving the MRI motion problem with Framewise Integrated Real-Time MRI Monitoring (FIRMM) software
使用逐帧集成实时 MRI 监测 (FIRMM) 软件解决 MRI 运动问题
- 批准号:
10264547 - 财政年份:2020
- 资助金额:
$ 154.92万 - 项目类别:
Solving the MRI motion problem with Framewise Integrated Real-Time MRI Monitoring (FIRMM) software
使用逐帧集成实时 MRI 监测 (FIRMM) 软件解决 MRI 运动问题
- 批准号:
10009674 - 财政年份:2020
- 资助金额:
$ 154.92万 - 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
- 批准号:
9908756 - 财政年份:2019
- 资助金额:
$ 154.92万 - 项目类别:
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新发现青少年痛风易感基因OTUD4对痛风炎症的影响及调控机制研究
- 批准号:82301003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人际压力影响青少年抑郁发展的心理与神经机制:基于自我意识的视角
- 批准号:32371118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于奖赏缺陷探究青少年抑郁症患者非自杀性自伤行为的发生机制和构建预测模型的研究
- 批准号:82301737
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Investigating relationships between problematic social media use and binge-eating disorder to inform precision guidance for adolescents
调查有问题的社交媒体使用与暴食症之间的关系,为青少年提供精准指导
- 批准号:
10815182 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
A new large pre-clinical model of aging-related heart failure: a platform to develop new therapies for HFpEF
衰老相关心力衰竭的新型大型临床前模型:开发 HFpEF 新疗法的平台
- 批准号:
10750836 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Gene-Environment Interplay and Alcohol Use among Racially-Ethnically Diverse Youth: A Developmentally and Culturally Informed Approach
种族-民族多元化青年中的基因-环境相互作用和酒精使用:一种发展和文化知情的方法
- 批准号:
10779197 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Independent and interactive effects of genetic risk for depression and family income-to-needs on emotional brain development and behavior
抑郁症遗传风险和家庭收入需求对情绪脑发育和行为的独立和交互影响
- 批准号:
10678577 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别: