Solving the MRI motion problem with Framewise Integrated Real-Time MRI Monitoring (FIRMM) software
使用逐帧集成实时 MRI 监测 (FIRMM) 软件解决 MRI 运动问题
基本信息
- 批准号:10264547
- 负责人:
- 金额:$ 140.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ASD patientAddressAdoptionAdultAgeAnesthesia proceduresAwardBenchmarkingBiofeedbackBrainBrain imagingBusinessesChildChildhoodClinicalClinical/RadiologicCodeComputer softwareDataData DisplayDevicesDiagnosticDigital Imaging and Communications in MedicineEconomicsElderlyEnsureEntropyEvaluation ReportsExposure toFaceFeedbackFunctional Magnetic Resonance ImagingFundingGoalsGrantHeadHealthHumanImageInstitutionInvestigationKineticsLegal patentMRI ScansMagnetic Resonance ImagingMeasuresMedicalMethodsMonitorMotionMovementOperating SystemParticipantPatient MonitoringPatientsPhasePhysiciansPredispositionRadiationRandomizedResearchResolutionRiskRobin birdS PhaseSafetyScanningSedation procedureSmall Business Innovation Research GrantSmall Business Technology Transfer ResearchSpecific qualifier valueSpeedStructureSystemTechnologyTemperatureTestingTimeTranslatingUnited StatesValidationVisualWorkagedbasecombatcostcost estimatedata acquisitiondesignfallshigh resolution imagingimprovedmonitoring devicepreventreconstructionresearch clinical testingtoolusabilitywasting
项目摘要
Project Abstract/Summary
The goal of this SBIR/STTR application is to deliver a technology that accurately and non-invasively measures
a patient’s head motion during a structural magnetic resonance imaging (MRI) scan (Framewise Integrated
Real-Time MRI Monitoring -structural [FIRMM-s]). Because structural MRI scanning produces high-resolution
images and does not expose patients to radiation, it has become an immensely valuable diagnostic tool,
particularly for imaging the brain. Last year, in the United States alone, there were over 8 million brain MRIs,
costing an estimated $20-30 billion. Unfortunately, brain MRIs are limited by the fact that head motion during
the scan can cause the resulting images to be suboptimal or even unusable. An estimated 20% of all brain
MRIs are ruined by motion, wasting $2-4 billion annually. Currently, there are two predominant strategies to
combat head motion: repeat scanning and anesthesia, both of which are inadequate. Repeat scanning, which
consists of acquiring extra images (to ensure enough usable ones were acquired), increases scanning time
and cost, and can result in too few usable images or unnecessary, extra images. Anesthesia, which is given to
patients who are likely to move (such as young children), presents a serious safety risk and is sometimes
administered unnecessarily (i.e. the patient could hold still without anesthesia).
The software-based FIRMM-s solution proposed in this grant uses MR images (as they are being collected) to
compute a patient’s head motion in real time during an MRI scan. The availability of real time motion
information will enable more informed anesthesia use and reduce excess scanning, making these methods
safer and more efficient. Armed with real time motion information, scan operators will know exactly how many
usable images have been acquired, preventing the acquisition of too many or too few extra images.
Additionally, providing physicians with quantitative information about patient motion will allow them to make an
informed decision regarding anesthesia, preventing unnecessary sedation.
The proposed solution also contains an entirely new method for combating head motion: patient biofeedback.
The technology can translate the head motion information into age-appropriate, visual biofeedback for the
patient. By providing feedback to patients, the technology helps both pediatric and adult patients remain more
still, improving image quality. The proposed research focuses on delivering proof-of-concept for FIRMM-s
(Phase I) and building and validating a clinical-ready version of FIRMM-s (Phase II). The FIRMM-s device
provides scan operators, physicians, and patients with real time motion information, with the goal of making
MR scans safer, faster, and less expensive.
项目摘要/总结
该 SBIR/STTR 应用程序的目标是提供一种能够准确、非侵入性测量的技术
结构磁共振成像 (MRI) 扫描期间患者的头部运动(逐帧集成
实时 MRI 监测 - 结构 [FIRMM-s])因为结构 MRI 扫描可产生高分辨率。
图像并且不会使患者受到辐射,它已成为一种非常有价值的诊断工具,
特别是去年,仅在美国就有超过 800 万张脑部 MRI 图像,
不幸的是,大脑 MRI 受到头部运动的限制。
扫描可能会导致生成的图像不理想甚至无法使用(估计有 20% 的大脑)。
MRI 会因运动而损坏,每年浪费 2-40 亿美元,目前有两种主要策略。
打击头部运动:重复扫描和麻醉,这两者都是不够的。
包括获取额外的图像(以确保获取足够的可用图像),增加扫描时间
和成本,并可能导致可用图像太少或不必要的额外图像。
可能移动的患者(例如幼儿)存在严重的安全风险,有时
不必要的管理(即患者无需麻醉即可保持静止)。
本次拨款中提出的基于软件的 FIRMM-s 解决方案使用 MR 图像(当它们被收集时)来
在 MRI 扫描过程中实时计算患者的头部运动 实时运动的可用性。
信息将使麻醉使用更加明智并减少过度扫描,从而使这些方法
有了实时运动信息,扫描操作员就能准确地知道有多少个。
已获取可用图像,防止获取过多或过少的额外图像。
此外,为医生提供有关患者运动的定量信息将使他们能够做出
有关麻醉的知情决定,防止不必要的镇静。
所提出的解决方案还包含一种对抗头部运动的全新方法:患者生物反馈。
该技术可以将头部运动信息转化为适合年龄的视觉生物反馈
通过向患者提供反馈,该技术可以帮助儿童和成人患者保持更多状态。
尽管如此,拟议的研究重点是为 FIRMM-s 提供概念验证。
(第一阶段)以及构建和验证 FIRMM-s 的临床就绪版本(第二阶段)。
为扫描操作员、医生和患者提供实时运动信息,目的是使
MR 扫描更安全、更快且更便宜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd William Deckard其他文献
Todd William Deckard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd William Deckard', 18)}}的其他基金
Solving the MRI motion problem with Framewise Integrated Real-Time MRI Monitoring (FIRMM) software
使用逐帧集成实时 MRI 监测 (FIRMM) 软件解决 MRI 运动问题
- 批准号:
10009674 - 财政年份:2020
- 资助金额:
$ 140.84万 - 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
- 批准号:
9908756 - 财政年份:2019
- 资助金额:
$ 140.84万 - 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
- 批准号:
10019735 - 财政年份:2019
- 资助金额:
$ 140.84万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 140.84万 - 项目类别:
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 140.84万 - 项目类别:
EU-Funded
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 140.84万 - 项目类别:
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 140.84万 - 项目类别:
EU-Funded
Leveraging COVID-19 to modernize depression care for VA primary care populations
利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化
- 批准号:
10636681 - 财政年份:2023
- 资助金额:
$ 140.84万 - 项目类别: