Solving the MRI motion problem with Framewise Integrated Real-Time MRI Monitoring (FIRMM) software

使用逐帧集成实时 MRI 监测 (FIRMM) 软件解决 MRI 运动问题

基本信息

  • 批准号:
    10264547
  • 负责人:
  • 金额:
    $ 140.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Project Abstract/Summary The goal of this SBIR/STTR application is to deliver a technology that accurately and non-invasively measures a patient’s head motion during a structural magnetic resonance imaging (MRI) scan (Framewise Integrated Real-Time MRI Monitoring -structural [FIRMM-s]). Because structural MRI scanning produces high-resolution images and does not expose patients to radiation, it has become an immensely valuable diagnostic tool, particularly for imaging the brain. Last year, in the United States alone, there were over 8 million brain MRIs, costing an estimated $20-30 billion. Unfortunately, brain MRIs are limited by the fact that head motion during the scan can cause the resulting images to be suboptimal or even unusable. An estimated 20% of all brain MRIs are ruined by motion, wasting $2-4 billion annually. Currently, there are two predominant strategies to combat head motion: repeat scanning and anesthesia, both of which are inadequate. Repeat scanning, which consists of acquiring extra images (to ensure enough usable ones were acquired), increases scanning time and cost, and can result in too few usable images or unnecessary, extra images. Anesthesia, which is given to patients who are likely to move (such as young children), presents a serious safety risk and is sometimes administered unnecessarily (i.e. the patient could hold still without anesthesia). The software-based FIRMM-s solution proposed in this grant uses MR images (as they are being collected) to compute a patient’s head motion in real time during an MRI scan. The availability of real time motion information will enable more informed anesthesia use and reduce excess scanning, making these methods safer and more efficient. Armed with real time motion information, scan operators will know exactly how many usable images have been acquired, preventing the acquisition of too many or too few extra images. Additionally, providing physicians with quantitative information about patient motion will allow them to make an informed decision regarding anesthesia, preventing unnecessary sedation. The proposed solution also contains an entirely new method for combating head motion: patient biofeedback. The technology can translate the head motion information into age-appropriate, visual biofeedback for the patient. By providing feedback to patients, the technology helps both pediatric and adult patients remain more still, improving image quality. The proposed research focuses on delivering proof-of-concept for FIRMM-s (Phase I) and building and validating a clinical-ready version of FIRMM-s (Phase II). The FIRMM-s device provides scan operators, physicians, and patients with real time motion information, with the goal of making MR scans safer, faster, and less expensive.
项目摘要/摘要 该SBIR/STTR应用程序的目的是提供一种准确和非侵入性测量的技术 在结构磁共振成像(MRI)扫描期间患者的头部运动 实时MRI监测 - 结构[Firmm-S])。因为结构性MRI扫描会产生高分辨率 图像并且不会使患者暴露于辐射,它已成为一种非常有价值的诊断工具, 特别是用于成像大脑。去年,仅在美国,就有超过800万的大脑MRI, 估计耗资约200亿美元。不幸的是,大脑MRI受到以下事实的限制。 扫描可能导致所得图像次优甚至无法使用。估计所有大脑的20% MRI被动作破坏,每年浪费200亿美元。目前,有两种主要策略 战斗头运动:重复扫描和麻醉,两者都不足。重复扫描,哪个 包括获取额外图像(确保获得足够的图像),增加扫描时间 和成本,并且可能导致太少的可用图像或不必要的额外图像。麻醉 可能会移动的患者(例如幼儿)会出现严重的安全风险,有时是 管理不必要的(即患者仍然可以没有麻醉)。 该赠款中提出的基于软件的FIRMEM-S解决方案使用MR图像(收集到它们的收集) 在MRI扫描期间,实时计算患者的头部运动。实时运动的可用性 信息将使更多明智的麻醉使用并减少多余的扫描,从而做出这些方法 更安全,更高效。扫描操作员将拥有实时运动信息,将确切知道多少 已经获取了可用的图像,从而阻止了收购过多或太少的额外图像。 此外,向医生提供有关患者运动的定量信息将使他们能够做 关于麻醉的明智决定,防止不必要的镇静。 提出的解决方案还包含一种打击头部运动的全新方法:患者生物反馈。 该技术可以将头部运动信息转化为适合年龄的,视觉生物反馈 病人。通过向患者提供反馈,该技术可以帮助小儿和成年患者保持更多 尽管如此,提高图像质量。拟议的研究重点是为Firmm-S提供概念验看 (I阶段)并构建并验证了Firmm-S(II阶段)的临床就绪版本。 Firmm-S设备 为扫描操作员,医生和患者提供实时运动信息,目的是 扫描先生更安全,更快,更便宜。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd William Deckard其他文献

Todd William Deckard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd William Deckard', 18)}}的其他基金

Motion-robust brain MRI for infants
适用于婴儿的运动鲁棒性脑 MRI
  • 批准号:
    10081657
  • 财政年份:
    2020
  • 资助金额:
    $ 140.84万
  • 项目类别:
Motion-robust brain MRI for infants
适用于婴儿的运动鲁棒性脑 MRI
  • 批准号:
    10264551
  • 财政年份:
    2020
  • 资助金额:
    $ 140.84万
  • 项目类别:
Solving the MRI motion problem with Framewise Integrated Real-Time MRI Monitoring (FIRMM) software
使用逐帧集成实时 MRI 监测 (FIRMM) 软件解决 MRI 运动问题
  • 批准号:
    10009674
  • 财政年份:
    2020
  • 资助金额:
    $ 140.84万
  • 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
  • 批准号:
    9908756
  • 财政年份:
    2019
  • 资助金额:
    $ 140.84万
  • 项目类别:
Visual biofeedback to reduce head motion during MRI scans
视觉生物反馈可减少 MRI 扫描期间的头部运动
  • 批准号:
    10019735
  • 财政年份:
    2019
  • 资助金额:
    $ 140.84万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 140.84万
  • 项目类别:
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 140.84万
  • 项目类别:
    EU-Funded
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 140.84万
  • 项目类别:
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 140.84万
  • 项目类别:
    EU-Funded
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
  • 批准号:
    10672785
  • 财政年份:
    2023
  • 资助金额:
    $ 140.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了