A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
基本信息
- 批准号:10732812
- 负责人:
- 金额:$ 52.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnimal ModelArchitectureBiological AssayBiomedical EngineeringBrainCell Differentiation processCell TherapyCentral Nervous SystemCentral Nervous System DiseasesDataDevelopmentDiagnosisDiseaseDisease modelDorsalEctodermEmbryoEmbryologyEventExhibitsFoundationsGeneticGeometryGoalsHomeobox GenesHumanKnowledgeLifeMeasurementMental disordersMicrofluidicsMidbrain structureModelingMolecularNerve TissueNeural Tube DevelopmentNeural tubeNeurodevelopmental DisorderNeuronal DifferentiationNeuronsOrganoidsPathologyPatternPharmaceutical PreparationsPlayPreventionProcessPropertyProsencephalonResearchRoleSignal TransductionSpecific qualifier valueSpinal CordStem Cell DevelopmentStructureTechniquesTestingTimeTissuesToxic effectTubular formationdifferentiation protocolembryo tissuehigh throughput screeninghindbrainhuman modelhuman pluripotent stem cellhuman stem cellsin vitro Modelin vivoinnovationmorphogensnerve stem cellnervous system developmentnervous system disorderneuralneural patterningneural plateneurodevelopmentneuroregulationnotochordprogenitorpublic health relevancerational designself organizationspatiotemporalstem cell modelstem cell therapystem cellssuccesstool
项目摘要
Project Summary
A Fully Patterned Human Neural Tube Model Using Microfluidics
The development of vertebrate central nervous system (CNS) begins with the formation of neural tube (NT)
and its regional patterning to generate neuronal subtypes along the rostral (R)-caudal (C) and dorsal (D)-
ventral (V) axes. Regional patterning of the human NT is a tightly regulated process, deviation from which can
result in neurodevelopmental disorders and may lead to distinct neurological and psychiatric diseases later in
life. Regional patterning of the human NT remains incompletely understood due to limited access to human
embryonic tissues. Animal models have been instrumental in understanding the development of human CNS
and associated disorders. However, they are limited in revealing some fundamental aspects of development,
genetics, pathology, and disease mechanisms that are unique to humans. Stem cell-based in vitro models of
human nervous system development, including neural organoids and bioengineered NT development models,
are emerging as promising experimental tools. However, none of the current stem cell-based neural
development models is capable of recapitulating neural patterning along two orthogonal axes in a 3D tubular
geometry, the hallmark of NT patterning in vivo. Furthermore, the existing neural development models only
recapitulate certain aspects of the development of either human brain or spinal cord regions but not both.
In our preliminary study, we have successfully leveraged the developmental potential and self-
organizing property of human pluripotent stem cells (hPSCs) in conjunction with microfluidics to develop the
first of its kind, synthetic, fully patterned human NT model. Using this microfluidic platform, exogenous
morphogen gradients along two orthogonal axes can be established to achieve regional patterning of the
microfluidic human NT-like structure along both the R-C and D-V axes, in both brain-like and spinal cord-like
regions. This microfluidic patterned human NT-like structure exhibits many hallmarks of NT development,
including a tubular geometry, a single continuous central lumen enclosing by neuronal progenitor cells,
patterned expression of canonical R-C and D-V regional markers including HOX genes, and the emergence of
neural mesodermal progenitors and the isthmic organizer. Thus, the development of the microfluidic human
NT-like structure closely mimics NT development, offering for the first time an in vivo-like tissue architecture
with consistent spatiotemporal cell differentiation and organization.
The goal of this R01 research is to develop this exciting microfluidic human NT-like model (Aim 1) and
leverage its technical advantages to study the roles of different exogenous morphogen signals in neural
patterning (Aim 2 & 3). Genetic perturbations and lineage tracing assays will be conducted to study human
neural mesodermal progenitor development (Aim 2). In Aim 3 we further aim to achieve D-V patterned human
NT-like structures with either forebrain or spinal cord identities and use these structures to recapitulate
interregional cellular interactions and excitation-to-inhibition interplays during cortical development.
项目摘要
使用微流体的完全模式的人类神经管模型
脊椎动物中枢神经系统(CNS)的发展始于形成神经管(NT)
及其区域模式以产生沿rostral(r)-caudal(c)和背(d)的神经元亚型 -
腹侧(V)轴。人类NT的区域模式是一个严格调节的过程,偏差可以从中
导致神经发育障碍,后来可能导致明显的神经和精神病
生活。人类NT的区域模式由于有限的人类机会而尚未完全理解
胚胎组织。动物模型有助于理解人类中枢神经系统的发展
和相关的疾病。但是,它们在揭示发展的某些基本方面受到限制,
人类独有的遗传学,病理和疾病机制。基于干细胞的体外模型
人类神经系统的发展,包括神经器官和生物工程的NT开发模型,
正在成为有希望的实验工具。但是,当前基于干细胞的神经没有
开发模型能够沿着3D管状的两个正交轴概括神经模式
几何,在体内图案的标志。此外,现有的神经发展模型
概括人脑或脊髓区域发展的某些方面,但并非两者兼而有之。
在我们的初步研究中,我们成功利用了发展潜力和自我
组织多能干细胞(HPSC)与微流体的组织特性
首先,合成的,完全构图的人类NT模型。使用此微流体平台,外源
可以建立沿两个正交轴的形态学梯度,以实现区域模式
沿R-C和D-V轴的微流体人类NT样结构,脑样和脊髓状的结构
地区。这种微流体图案化的人类NT样结构具有NT发展的许多标志,
包括管状几何形状,一个由神经元祖细胞封闭的单个连续中央管腔,
包括HOX基因在内的规范R-C和D-V区域标记的图案表达,以及出现
神经中胚层祖细胞和峡部组织者。因此,微流体人类的发展
NT状结构紧密模仿NT的开发,首次提供体内的组织结构
具有一致的时空细胞分化和组织。
这项R01研究的目的是开发这种令人兴奋的微流体人类NT样模型(AIM 1)和
利用其技术优势研究不同的外源形态学信号在神经中的作用
图案(AIM 2和3)。遗传扰动和谱系追踪测定将进行研究
神经中胚层祖细胞发展(AIM 2)。在目标3中,我们进一步旨在实现D-V图案的人
具有前脑或脊髓身份的NT样结构,并使用这些结构概括
皮质发育过程中区域间细胞相互作用和激发对抑制作用的互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 52.34万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 52.34万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别: