Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
基本信息
- 批准号:10666902
- 负责人:
- 金额:$ 20.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelBenchmarkingBiological ModelsBrainBrain DiseasesBrain regionCell divisionCellsCentral Nervous SystemDNA Sequence AlterationDataDevelopmentDevelopmental ProcessDiseaseDisease modelDorsalElementsEmbryoEtiologyExhibitsGenesGeneticGenetic studyGeometryGoalsGrowthHealthHumanIndividualKnock-outKnockout MiceMeasurementMediatingMicrocephalyMicrofluidic MicrochipsMicrofluidicsMidbrain structureModelingMusMutationNeural Tube DevelopmentNeural tubeNuclearOrganoidsPathologyPatternPositioning AttributePregnancyPrevalenceProcessPropertyProsencephalonProteinsProtocols documentationReproducibilityResearchRoleSocietiesSpinal CordStructureTechnologyTissuesTubular formationbrain abnormalitiescell motilitycomparativedisease phenotypegenome sequencinghindbrainhuman modelhuman pluripotent stem cellin vitro Modelin vivoinnovationmodel developmentmorphogensmouse modelmutantmutant mouse modelnerve stem cellneural networkneural patterningneurodevelopmentnovelpersonalized medicinepublic health relevanceself organizationsingle-cell RNA sequencingspatiotemporalstem cellstooltranscriptome
项目摘要
Project Summary
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
Development of the vertebrate central nervous system (CNS) begins with the formation of neural tube (NT) and
its regional patterning to generate the forebrain, midbrain, hindbrain, and spinal cord. Regional patterning of
the brain is a tightly regulated developmental process, deviation from which can result in neurodevelopmental
brain diseases. Multiple causes are associated with neurodevelopmental brain diseases, including genetic,
environmental, infectious, and traumatic factors. Even though the precise etiology of neurodevelopmental
brain diseases remains largely unknown, the genetic components of neurodevelopmental brain diseases have
been increasingly deciphered with the advent of personalized medicine. However, detailed pathophysiological
mechanisms of neurodevelopmental brain diseases remain challenging to study, due to limited access to
human CNS tissues. Animal models have been instrumental in understanding human neurodevelopment and
associated disorders. However, they are limited in revealing some of the most fundamental aspects of
development, genetics, pathology, and disease mechanisms that are unique to humans. Stem cell-based in
vitro models of human neurodevelopment are emerging as promising experimental tools. However, the
controllability and reproducibility of these models remain suboptimal. Furthermore, none of the current
neurodevelopment models is capable of recapitulating regional patterning of the brain faithfully in a 3D tubular
geometry, a hallmark of neurodevelopment.
The goal of this R21 project is to specifically address this significant technological need, by using
human pluripotent stem cells (hPSCs) to develop a human brain development model that can faithfully
recapitulate regional brain patterning. Importantly, we propose to apply this model to study the function of
nuclear distribution element 1 (NDE1), a gene implicated in a wide range of neurodevelopmental conditions,
including microcephaly (a small brain), microlissencephaly (a small brain with a simplified gyral pattern), or
microhydranencephaly (a more severe presentation). In our preliminary study, we have successfully leveraged
the developmental potential and self-organizing property of hPSCs in conjunction with innovative microfluidics
to develop the first of its kind, synthetic, fully patterned human NT model. Our preliminary data from brain
organoids generated from NDE1-knockout (KO) hPSCs further show that NDE1-KO brain organoids exhibit
reduced growth and gyrification and furthermore show abnormal brain regionalization. Thus, our preliminary
data suggest a novel and previously unexplored mechanism involving dysregulated brain regionalization in
NDE1-mediated microcephaly. In this proposal, we propose to first extend the microfluidic patterned human
NT model to recapitulate brain regionalization (Aim 1). We will then utilize this controllable human brain
development model and a Nde1-KO mouse model to study the role of NDE1 mutations in dysregulated brain
regionalization (Aim 2).
项目概要
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
脊椎动物中枢神经系统(CNS)的发育始于神经管(NT)的形成和
它的区域模式产生前脑、中脑、后脑和脊髓。区域格局
大脑是一个受到严格调控的发育过程,偏离该过程可能会导致神经发育障碍
脑部疾病。多种原因与神经发育性脑疾病有关,包括遗传、
环境、传染性和创伤性因素。尽管神经发育的确切病因学
脑部疾病仍然很大程度上未知,神经发育性脑部疾病的遗传成分已经
随着个性化医疗的出现,这一问题被越来越多地解读。然而,详细的病理生理学
由于获取途径有限,神经发育性脑疾病的机制仍然难以研究
人类中枢神经系统组织。动物模型有助于理解人类神经发育和
相关疾病。然而,它们在揭示一些最基本的方面方面是有限的。
人类特有的发育、遗传学、病理学和疾病机制。以干细胞为基础
人类神经发育的体外模型正在成为有前途的实验工具。然而,
这些模型的可控性和再现性仍然不够理想。此外,目前没有任何
神经发育模型能够在 3D 管状结构中忠实地再现大脑的区域模式
几何学,神经发育的标志。
R21 项目的目标是通过使用
人类多能干细胞(hPSC)开发人类大脑发育模型,可以忠实地
概括区域大脑模式。重要的是,我们建议应用该模型来研究
核分布元件 1 (NDE1),一种与多种神经发育状况有关的基因,
包括小头畸形(小大脑)、小无脑畸形(具有简化脑回模式的小大脑),或
微积水脑畸形(更严重的表现)。在我们的初步研究中,我们成功地利用了
hPSC 的发展潜力和自组织特性与创新微流体技术相结合
开发第一个合成的、完全模式化的人类 NT 模型。我们来自大脑的初步数据
由 NDE1 敲除 (KO) hPSC 生成的类器官进一步表明,NDE1-KO 脑类器官表现出
生长和回转减少,此外还显示出异常的大脑区域化。于是,我们初步
数据表明,存在一种新颖且以前未探索过的机制,涉及大脑区域化失调
NDE1 介导的小头畸形。在这个提案中,我们建议首先扩展微流体图案的人体
NT 模型概括大脑区域化(目标 1)。然后我们就利用这个可控的人脑
发育模型和 Nde1-KO 小鼠模型,用于研究 NDE1 突变在大脑失调中的作用
区域化(目标 2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别: