Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
基本信息
- 批准号:10666902
- 负责人:
- 金额:$ 20.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelBenchmarkingBiological ModelsBrainBrain DiseasesBrain regionCell divisionCellsCentral Nervous SystemDNA Sequence AlterationDataDevelopmentDevelopmental ProcessDiseaseDisease modelDorsalElementsEmbryoEtiologyExhibitsGenesGeneticGenetic studyGeometryGoalsGrowthHealthHumanIndividualKnock-outKnockout MiceMeasurementMediatingMicrocephalyMicrofluidic MicrochipsMicrofluidicsMidbrain structureModelingMusMutationNeural Tube DevelopmentNeural tubeNuclearOrganoidsPathologyPatternPositioning AttributePregnancyPrevalenceProcessPropertyProsencephalonProteinsProtocols documentationReproducibilityResearchRoleSocietiesSpinal CordStructureTechnologyTissuesTubular formationbrain abnormalitiescell motilitycomparativedisease phenotypegenome sequencinghindbrainhuman modelhuman pluripotent stem cellin vitro Modelin vivoinnovationmodel developmentmorphogensmouse modelmutantmutant mouse modelnerve stem cellneural networkneural patterningneurodevelopmentnovelpersonalized medicinepublic health relevanceself organizationsingle-cell RNA sequencingspatiotemporalstem cellstooltranscriptome
项目摘要
Project Summary
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
Development of the vertebrate central nervous system (CNS) begins with the formation of neural tube (NT) and
its regional patterning to generate the forebrain, midbrain, hindbrain, and spinal cord. Regional patterning of
the brain is a tightly regulated developmental process, deviation from which can result in neurodevelopmental
brain diseases. Multiple causes are associated with neurodevelopmental brain diseases, including genetic,
environmental, infectious, and traumatic factors. Even though the precise etiology of neurodevelopmental
brain diseases remains largely unknown, the genetic components of neurodevelopmental brain diseases have
been increasingly deciphered with the advent of personalized medicine. However, detailed pathophysiological
mechanisms of neurodevelopmental brain diseases remain challenging to study, due to limited access to
human CNS tissues. Animal models have been instrumental in understanding human neurodevelopment and
associated disorders. However, they are limited in revealing some of the most fundamental aspects of
development, genetics, pathology, and disease mechanisms that are unique to humans. Stem cell-based in
vitro models of human neurodevelopment are emerging as promising experimental tools. However, the
controllability and reproducibility of these models remain suboptimal. Furthermore, none of the current
neurodevelopment models is capable of recapitulating regional patterning of the brain faithfully in a 3D tubular
geometry, a hallmark of neurodevelopment.
The goal of this R21 project is to specifically address this significant technological need, by using
human pluripotent stem cells (hPSCs) to develop a human brain development model that can faithfully
recapitulate regional brain patterning. Importantly, we propose to apply this model to study the function of
nuclear distribution element 1 (NDE1), a gene implicated in a wide range of neurodevelopmental conditions,
including microcephaly (a small brain), microlissencephaly (a small brain with a simplified gyral pattern), or
microhydranencephaly (a more severe presentation). In our preliminary study, we have successfully leveraged
the developmental potential and self-organizing property of hPSCs in conjunction with innovative microfluidics
to develop the first of its kind, synthetic, fully patterned human NT model. Our preliminary data from brain
organoids generated from NDE1-knockout (KO) hPSCs further show that NDE1-KO brain organoids exhibit
reduced growth and gyrification and furthermore show abnormal brain regionalization. Thus, our preliminary
data suggest a novel and previously unexplored mechanism involving dysregulated brain regionalization in
NDE1-mediated microcephaly. In this proposal, we propose to first extend the microfluidic patterned human
NT model to recapitulate brain regionalization (Aim 1). We will then utilize this controllable human brain
development model and a Nde1-KO mouse model to study the role of NDE1 mutations in dysregulated brain
regionalization (Aim 2).
项目摘要
使用微流体CNS模型在失调的大脑发育中建模NDE1功能
脊椎动物中枢神经系统(CNS)的发展始于形成神经管(NT)和
它的区域模式以产生前脑,中脑,后脑和脊髓。区域构图
大脑是一个严格调节的发育过程,偏差会导致神经发育
脑部疾病。多种原因与神经发育脑疾病有关,包括遗传,
环境,传染性和创伤因素。即使神经发育的精确病因
脑部疾病在很大程度上尚不清楚,神经发育脑疾病的遗传成分具有
随着个性化医学的出现,越来越多地破译。但是,详细的病理生理学
神经发育脑部疾病的机制仍然具有挑战性
人类中枢神经系统组织。动物模型对了解人类神经发育和
相关疾病。但是,它们在揭示一些最根本的方面受到限制
人类独有的发展,遗传学,病理和疾病机制。基于干细胞IN
人类神经发育的体外模型正在成为有前途的实验工具。但是,
这些模型的可控性和可重复性仍然是最佳的。此外,当前都没有
神经发育模型能够在3D管状中忠实地概括大脑的区域模式
几何,神经发育的标志。
该R21项目的目标是通过使用
人类多能干细胞(HPSC)开发可以忠实的人脑发育模型
概括区域大脑模式。重要的是,我们建议应用此模型来研究
核分布元件1(NDE1),该基因与广泛的神经发育条件有关,
包括小头畸形(一个小大脑),微卵形畸形(具有简化陀螺模式的小大脑)或
微水脑(更严重的表现)。在我们的初步研究中,我们成功利用了
HPSC的发展潜力和自组织特性与创新的微流体相结合
为了开发同类的第一个,合成的,完全构图的人类NT模型。我们的大脑初步数据
NDE1-KNOCKOUT(KO)HPSC产生的类器官进一步表明NDE1-KO脑器官展示
降低的生长和回旋以及进一步显示出异常的大脑区域化。因此,我们的初步
数据表明,一种新颖且以前未开发的机制,涉及大脑失调的大脑区域化
NDE1介导的小头畸形。在此提案中,我们建议首先扩展微流体图案化的人类
概括大脑区域化的NT模型(AIM 1)。然后,我们将利用这种可控的人脑
开发模型和NDE1-KO小鼠模型研究NDE1突变在大脑失调失调中的作用
区域化(目标2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别: